WWW. Pales

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0581 MATHEMATICS

0581/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Syllabus	
F	Page 2	Mark Scheme: Teachers' version	Syllabus	2
		IGCSE – May/June 2011	0581	700
Abbre	eviations			Cambridge
cao	correct ans	swer only		O. C.
cso	correct sol	ution only		8
dep	dependent			G.C.
ft	follow thro	ough after error		On
isw	ignore sub	sequent working		7
oe	or equivale	ent		
SC	Special Ca	ase		

Abbreviations

without wrong working www

Qu.	Answers	Mark	Part Mark
1	847	1	
2	correct regions shaded	1, 1	
3	48	2	B1 for 3 and 16 seen
4	(a) 10	1	
	(b) 5.5 oe	1	
5	(a) 86400	1	
	(b) 8.64×10^4	1ft	
6	108	2	M1 for 3^3 or 27 or $\left(\frac{1}{3}\right)^3$ or $\frac{1}{27}$ seen
7	13	3	B1 for 12, 5 seen M1 for (their 12) ² + (their 5) ² or M2 $\sqrt{[(-8-4)^2+(1-6)^2]}$ oe or M1 if $\sqrt{\text{missing}}$
8	6.70	3	or M1 if $\sqrt{\text{missing}}$ M1 for $(r^3 =) 1260 \times \frac{3}{4\pi}$ oe seen M1 for $\sqrt[3]{}$ of their r^3 seen or implied
9	22.5 oe	3	B2 $180 = 5x + 2x + x$ oe or better B1 for $2x$ or $6x$ marked in the correct place on the diagram.
10	x = 13 $y = -9$	3	M1 for consistent multiplication and addition/subtraction A1 for $x = 13$ or A1 for $y = -9$
11	(a) 85.8	2	M1 for 23.25 and 19.65 seen
	(b) 456.8625 cao	1	
12	(a) (0)8(.)01 (am)	1	Not 8.01pm
	(b) 78.4 or 78.38 to 78.39	3	M2 for 827 ÷ 10.55 or M1 for figs 827 ÷ their time
13	(a) 0.54	2	M1 for $\frac{2.7 \times 20000}{100000}$ oe
			or SC1 for figs 54 in answer
	(b) 1.61	2	SC1 for figs 161 or M1 200 ² or 20 000 ² seen

		my
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0581

	(c) $\frac{x+3}{2}$	2	M1 for $x \pm 3 = 2y$ or $x = \frac{y \pm 3}{2}$
	(b) 4 www	3	M1 for $(2x-3)^3 = 125$ M1 $2x-3=5$
20	(a) (i) 9 (ii) $8x^3$ cao	1	
	(c) $0.125 \text{ or } \frac{1}{8}$	2	M1 for numerical vertical/horizontal or numerical use of $v = u + at$ but $t \le 120$ or $t \le 2$
			M1 for $0.5 \times 15 \times$ (their (a) + 14 × 60) oe or $0.5 \times 15 \times (8 + 14)$ oe
	(b) 9900	3	M1 for attempt at area under graph
19	(a) 480	1	E1 dep correct simplification and conclusion
	(b) correct working	3	M1 for $MX = \frac{1}{2} \mathbf{r} + \frac{3}{4}$ their $(-\mathbf{r} + \mathbf{q})$ M1 using a different route for XS or $\frac{1}{2} MS$
10	(a) (1) $-r + q$ or $q - r$ (ii) $\frac{1}{2}(3q - r)$ oe	1	Must be simplified
18	(c) 123° (a) (i) -r + q or q - r	2	B1 for OBA or $OAB = 57^{\circ}$
	(b) 33°	1	
17	(a) 66°	2	M1 for 90° clearly identified as A
	$\bigvee (4-\pi) \qquad \bigvee (4-\pi)$	3	M1 factorising (must contain a π) M1 division (by coefficient of k^2) M1 square root
	(b) $k = (\pm) \sqrt{\frac{4A}{(4-\pi)}}$ or $2\sqrt{\frac{A}{(4-\pi)}}$	3	correctly completed to $4A = 4k^2 - \pi k^2$ M1 factorising (must contain a π)
			E1 $A = k^2 - \frac{\pi k^2}{4}$
16	(a) Answer given	2	$\mathbf{M1} \ (A =)k^2 - \pi \left(\frac{k}{2}\right)^2$
	(c) $\frac{8}{15}$ oe 0.533(3)		$(k)^2$
	0.3056	1	
	(ii) $\frac{11}{36}$, 0.306 or 0.3055 to	1	
	(b) (i) $\frac{12}{36}$ oe 0.333	1	
15	(a) 4	1	and 1.1 or 1.137(45)
			B1 for $\sqrt{3^2 - 4(2)(-6)}$ or better seen anyw B1 for $p = -3$ and $r = 2 \times 2$ or better as long as the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ After B0B0, SC1 for -2.6 or -2.637(45)
			B1 for $p = -3$ and $r = 2 \times 2$ or better as long as $p + \sqrt{g}$ $p - \sqrt{g}$
14	-2.64, 1.14 cao with working	4	B1 for $\sqrt{3^2 - 4(2)(-6)}$ or better seen anyw