CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0439 CHEMISTRY (US)

0439/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

www.PapaCambridge.com

Page 2	Mark Scheme	Syllabus	.0	V
	IGCSE – May/June 2013	0439	100	

1 (a) (i) element

cannot be broken into anything simpler by chemical means **OR** made up of one type of atom only

(ii) compound

two **or** more different elements chemically bonded together

(iii) mixture

two **or** more substances not chemically joined together [1]

(b) (i) mixture [1]

(ii) compound [1]

(iii) element [1]

(c) conductivity (of heat or electricity) [1]

[Total: 9]

[1]

[1]

[1]

[1]

2 (a) (i) large / high surface area

high collision rate / collide more / many collisions [1]

(between oxygen molecules and aluminium atoms)

NOT faster collisions

(ii) concentration [1]

of reactants decreases

allow one mark **ONLY** for: for reactants used up **or** amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature		
M2	molecules move faster or particles have more energ		
М3	higher collision rate		
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a	

[3]

(b) (i) flour or wood dust or coal dust or carbon or sugar

[1]

Page 3		Mark Scheme	Syllabus N	1. Do
		IGCSE – May/June 2013	0439	200
, ,	powde suitab suitab result	aree from: er and larger pieces / different sized particles use ele named solid, e.g. magnesium ele named solution, e.g. named acid or copper sulf ele powder reacts faster than larger pieces Cu (with acid); K / Na with anything	ate(aq)	

3	(a)	(i)	cars, ships, bridges, construction, white goods, screws, nails, roofing, fencing, etc.	[1]
		(ii)	e.g. stainless steel cooking utensils, surgical equipment, sinks or main use	[1] [1]
	(b)	car CO add AL pho rea	w in oxygen bon dioxide <u>and</u> sulfur dioxide (escape as gases) ND on reaction with air / oxygen d calcium oxide / quicklime LOW calcium carbonate, limestone esphorus oxide or silicon oxide (are acidic) cts (with calcium oxide / CaCO ₃) orm slag / calcium silicate	[1] [1] [1] [1]
4	(a)	(i) (ii)	any ambiguous formula, e.g. $GeH_3-GeH_2-GeH_3$ Ge_nH_{2n+2} NOT C instead of Ge	[1] [1]
	(b)	(b) correct formula COND 4bps around germanium atom COND 3nbps and 1bp around each chlorine atom		[1] [1]
	(c)	two	r oxygen atoms around each germanium atom germanium atoms around each oxygen atom ahedral	[1] [1] [1]
	(d)	CO	dation ND increase in oxidation number CEPT: electron loss	[1] [1]

	Page 4		Mark Scheme	Syllabus	r
	•		IGCSE – May/June 2013	0439	Day .
5	(a) (i)	•	Group 1 metal CEPT: lithium	`	Da Cambridg
	(ii)	PbO	$(NO_3)_2 \rightarrow 2$ PbO + $4NO_2$ + O_2 0 [1] ND balancing [1]		13
	(iii)		metal in a (i) is more reactive than lead		[1]
			e reactive metals have more stable compounds has stronger (ionic) bonding		[1]
	(b) (i)	-	ed / rate of forward reaction = speed / rate of back of macroscopic properties do not change / constant (v		[1]
	(ii)	CON	s darker OR goes brown ND lower pressure favours side with more moles ND this is NO ₂ side OR reactant side OR goes left		[1] [1] [1]
	(iii)	exot	hermic		[1]
			temperatures favour the exothermic reaction or temperatures moves equilibrium to right / product s	side / towards N ₂ O ₄	[1]
	(iv)	forw	ard reaction is bond forming		[1]
6	(a) (i)	pure	sure melting point NOT just e sample would melt at 135°C impure would melt lower than 135°C	heating	[1] [1]
	(ii)	C ₃ H	$_4O_4$		[1]
	(iii)	etha	₄ O ₂ OR CH ₃ COOH noic OR acetic acid n marks are independent of each other		[1] [1]
	(iv)	este	NOT orga	nnic, covalent	[1]
	(b) (i)		onic is a weaker acid/less dissociated		[1]

OR sulfuric acid is a stronger acid/more dissociated **NOT** sulfuric acid is a strong acid

[1]

Page 5 Mark Scheme Syllabus		Page 5		Mark Scheme	Syllabus
OR as above add a piece of CaCO3, if soluble carbonate then [1] only OR measure electrical conductivity sulfuric acid is the better conductor OR malonic acid poorer conductor NOT sulfuric acid is a good conductor (c) (i) sodium malonate \underline{and} water (ii) CuSO4 H_2O [2] (iii) $CH_2(COO)_2Mg$ H_2 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iii) alkanes contain only $C-C$ single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n-2} [1] alkenes contain at least one $C=C$ double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of $BrCH_2CH_2Br$ NOT just $C_2H_4Br_2$ [1] (iii) $CH_3-CH=CH_2CH_3$ [2] For any butene [1] only (iiii) $(CH_3-CH_2-CH_2CH_2) + H_2O$ [1] $\rightarrow CH_3-CH_2-CH_2-CH_2OH$ [1] ALLOW $CH_3-CH-CH_2$ $CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-$				IGCSE – May/June 2013	0439
OR as above add a piece of CaCO3, if soluble carbonate then [1] only OR measure electrical conductivity sulfuric acid is the better conductor OR malonic acid poorer conductor NOT sulfuric acid is a good conductor (c) (i) sodium malonate \underline{and} water (ii) CuSO4 H_2O [2] (iii) $CH_2(COO)_2Mg$ H_2 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iii) alkanes contain only $C-C$ single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n-2} [1] alkenes contain at least one $C=C$ double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of $BrCH_2CH_2Br$ NOT just $C_2H_4Br_2$ [1] (iii) $CH_3-CH=CH_2CH_3$ [2] For any butene [1] only (iiii) $(CH_3-CH_2-CH_2CH_2) + H_2O$ [1] $\rightarrow CH_3-CH_2-CH_2-CH_2OH$ [1] ALLOW $CH_3-CH-CH_2$ $CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-$		(ii)		piece of suitable metal, e.g. Mg ALLOW A <i>l</i> , Ca NO	T K, Na, Cu
OR as above add a piece of CaCO3, if soluble carbonate then [1] only OR measure electrical conductivity sulfuric acid is the better conductor OR malonic acid poorer conductor NOT sulfuric acid is a good conductor (c) (i) sodium malonate \underline{and} water (ii) CuSO4 H_2O [2] (iii) $CH_2(COO)_2Mg$ H_2 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iii) alkanes contain only $C-C$ single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n-2} [1] alkenes contain at least one $C=C$ double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of $BrCH_2CH_2Br$ NOT just $C_2H_4Br_2$ [1] (iii) $CH_3-CH=CH_2CH_3$ [2] For any butene [1] only (iiii) $(CH_3-CH_2-CH_2CH_2) + H_2O$ [1] $\rightarrow CH_3-CH_2-CH_2-CH_2OH$ [1] ALLOW $CH_3-CH-CH_2$ $CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-$			sulfu	uric acid reacts faster OR malonic reacts slower	Tag
sulfuric acid is the better conductor OR malonic acid poorer conductor NOT sulfuric acid is a good conductor [1] (c) (i) sodium malonate and water [1] (ii) CuSO ₄ H_2O [2] (iii) $CH_2(COO)_2 Mg$ H_2 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iv) K_2SO_4 CO_2 and H_2O NOT H_2CO_3 [2] (iii) alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n-2} [1] alkenes contain at least one C-C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n-2} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br NOT just $C_2H_4Br_2$ [1] (b) $C_{13}CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$				bove add a piece of CaCO ₃ , if soluble carbonate the	•
OR malonic acid poorer conductor NOT sulfuric acid is a good conductor					[1]
(ii) $CuSO_4$ H_2O [2] (iii) $CH_2(COO)_2$ Mg H_2 [2] (iv) K_2SO_4 CO_2 and H_2O $NOT H_2CO_3$ [2] 7 (a) (i) a compound which contains carbon and hydrogen $onloop $ [1] (ii) alkanes contain $onloop $ $C-C$ single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one $C=C$ double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of $BrCH_2CH_2Br$ [1] NOT just $C_2H_4Br_2$ [1] (ii) $CH_3-CH=CH-CH_3$ For any butene [1] only [2] (iii) $(CH_3-CH_2-CH=CH_2) + H_2O$ [1] $\rightarrow CH_3-CH_2-CH_2-CH_2OH$ [1] $ALLOW \ CH_3-CHOH-CH_2-CH_3$ butene reacts with $water/steam$ (to form butanol) $ONLY$ [1]			OR	malonic acid poor er conductor	[1]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(c) (i)	sodi	um malonate <u>and</u> water	[1]
$\begin{array}{c} H_2 \\ \text{(iv)} \text{K}_2\text{SO}_4 \\ \text{CO}_2 \text{ and } \text{H}_2\text{O} \\ \text{OO}_2 \text{ and } \text{H}_2\text{O} \\ \text{OO}_2 \text{ and } \text{H}_2\text{O} \\ \text{(i)} \end{array} \begin{array}{c} \text{NOT H}_2\text{CO}_3 \\ \text{[Total: 16]} \\ \text{[Total: 16]} \\ \\ \text{7} \textbf{(a)} \textbf{(i)} \text{a compound which contains carbon and hydrogen } \underline{\textbf{only}} \\ \text{[I]} \\ \text{(ii)} \text{alkanes contain only C-C single bonds} \\ \text{or they are saturated (hydrocarbons)} \\ \text{or have the general formula } \text{C}_n\text{H}_{2n+2} \\ \text{[I]} \\ \text{alkenes contain at least one C=C double bond} \\ \text{or they are unsaturated (hydrocarbons)} \\ \text{or have the general formula } \text{C}_n\text{H}_{2n} \\ \text{or have the general formula } \text{C}_n\text{H}_{2n} \\ \text{or have the general formula } \text{C}_n\text{H}_{2n} \\ \text{[I]} \\ \text{(b)} \text{C}_{20}\text{H}_{42} \rightarrow 2\text{C}_4\text{H}_8 + 2\text{C}_2\text{H}_4 + \textbf{C}_8\text{H}_{18} \\ \text{[I]} \\ \text{(c)} \textbf{(i)} \text{any unambiguous structure of BrCH}_2\text{CH}_2\text{Br} \\ \text{NOT just } \text{C}_2\text{H}_4\text{Br}_2 \\ \text{(ii)} \text{CH}_3\text{-CH=CH-CH}_3 \\ \text{For any butene [1] only} \\ \text{(iii)} \text{(CH}_3\text{-CH}_2\text{-CH=CH}_2) + \text{H}_2\text{O} \text{[1]} \rightarrow \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{OH} \text{[1]} \\ \text{ALLOW CH}_3\text{-CHOH-CH}_2\text{-CH}_3 \\ \text{butene reacts with water/steam (to form butanol) ONLY [1]} \\ \text{(iv)} \text{C}_6\text{H}_{12} + \text{H}_2 \rightarrow \text{C}_6\text{H}_{14} \\ \text{[2]} \end{array}$		(ii)			[2]
CO2 and H2O NOT H2CO3 [2] [Total: 16] 7 (a) (i) a compound which contains carbon and hydrogen only [1] (ii) alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH2CH2Br NOT just $C_2H_4Br_2$ [1] (ii) CH_3 -CH=CH-CH3 [2] For any butene [1] only [2] (iii) $(CH_3$ -CH2-CH=CH2) + H2O [1] \rightarrow CH3-CH2-CH2-CH2-CH2-CH2 [1] ALLOW CH3-CHOH-CH2-CH3 butene reacts with water/steam (to form butanol) ONLY [1]		(iii)		(COO)₂ Mg	[2]
 7 (a) (i) a compound which contains carbon and hydrogen only (ii) alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) C₂₀H₄₂ → 2C₄H₈ + 2C₂H₄ + C₈H₁₈ [1] (c) (i) any unambiguous structure of BrCH₂CH₂Br NOT just C₂H₄Br₂ [1] NOT just C₂H₄Br₂ [2] For any butene [1] only (iii) (CH₃-CH=CH-CH₃ For any butene [1] only (iiii) (CH₃-CH₂-CH=CH₂) + H₂O [1] → CH₃-CH₂-CH₂-CH₂OH [1] ALLOW CH₃-CHOH-CH₂-CH₃ butene reacts with water/steam (to form butanol) ONLY [1] (iv) C₆H₁₂ + H₂ → C₆H₁₄ [2] 		(iv)			O_3 [2]
(ii) alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br NOT just C_2H_4 Br ₂ [1] NOT just C_2H_4 Br ₂ [2] For any butene [1] only [1] CH_3 -CH=CH-CH ₃ For any butene [1] only [2] ALLOW CH ₃ -CHOH-CH ₂ -CH ₃ butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]					[Total: 16]
(ii) alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br NOT just C_2H_4 Br ₂ [1] NOT just C_2H_4 Br ₂ [2] For any butene [1] only [1] CH_3 -CH=CH-CH ₃ For any butene [1] only [2] ALLOW CH ₃ -CHOH-CH ₂ -CH ₃ butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]					
or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2} [1] alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br NOT just C_2H_4 Br ₂ [1] NOT just C_2H_4 Br ₂ [2] For any butene [1] only [1] CH_3 -CH=CH=CH ₂) + H_2 O [1] CH_3 -CH ₂ -CH ₂ -CH ₂ OH [1] [2] ALLOW CH_3 -CHOH-CH ₂ -CH ₃ butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]	7	(a) (i)	a co	mpound which contains carbon and hydrogen only	[1]
or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br NOT just C_2H_4 Br ₂ [1] (ii) CH_3 -CH=CH-CH ₃ [2] For any butene [1] only [2] CH ₃ -CH ₂		(ii)	or th	ney are saturated (hydrocarbons)	[1]
or have the general formula C_nH_{2n} [1] (b) $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$ [1] (c) (i) any unambiguous structure of $BrCH_2CH_2Br$ [1] NOT just $C_2H_4Br_2$ [2] (ii) $CH_3-CH=CH-CH_3$ [2] For any butene [1] only (iii) $(CH_3-CH_2-CH=CH_2) + H_2O$ [1] $\rightarrow CH_3-CH_2-CH_2-CH_2OH$ [1] ALLOW $CH_3-CHOH-CH_2-CH_3$ butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]					
(c) (i) any unambiguous structure of BrCH ₂ CH ₂ Br [1] NOT just $C_2H_4Br_2$ [2] (ii) CH_3 -CH=CH-CH ₃ [2] For any butene [1] only [2] (CH ₃ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH ₂ OH [1] ALLOW CH ₃ -CHOH-CH ₂ -CH ₃ butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]				` • • • • • • • • • • • • • • • • • • •	[1]
NOT just $C_2H_4Br_2$ (ii) CH_3 -CH=CH-CH $_3$ [2] For any butene [1] only (iii) $(CH_3$ -CH $_2$ -CH=CH $_2$) + H_2O [1] \rightarrow CH $_3$ -CH $_2$ -CH $_2$ -CH $_2$ OH [1] [2] ALLOW CH $_3$ -CHOH-CH $_2$ -CH $_3$ butene reacts with water/steam (to form butanol) ONLY [1] (iv) C_6H_{12} + H_2 \rightarrow C_6H_{14} [2]		(b) C ₂₀	H ₄₂ -	$\rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$	[1]
For any butene [1] only		(c) (i)	-		[1]
ALLOW CH_3 - $CHOH$ - CH_2 - CH_3 butene reacts with water/steam (to form butanol) ONLY [1] (iv) $C_6H_{12} + H_2 \rightarrow C_6H_{14}$ [2]		(ii)			[2]
• • •		(iii)	ÀLL	OW CH ₃ -CHOH-CH ₂ -CH ₃	
		(iv)			[2]

(d) volume of oxygen used = $150 \, \text{cm}^3$

[1]

				_
Page 6	Mark Scheme	Syllabus	.0	V
	IGCSE – May/June 2013	0439	200	

volume of carbon dioxide formed = $100\,\mathrm{cm}^3$ any equation of the combustion of an alkene e.g. $2C_5H_{10}$ + $15O_2$ \rightarrow $10CO_2$ + $10H_2O$ formulae **COND** balancing

[1] COM