www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme Syllabus	1.0 V	
			IGCSE – October/November 2013 0439	120	
1	(a)	uranium	/ plutonium / thorium	A. Papa Cambridge	
	(b)	graphite	/ carbon	18	
	(c)	•	/ titanium / mercury / gold rbon / graphite	[1]	
	(d)	helium		[1]	
	(e)	nitrogen	/ phosphorus	[1]	
	(f)	argon ACCEP1	-: any ion 2 + 8 + 8 e.g. K⁺ etc.	[1]	
	(g)	tellurium ACCEP1	correct symbol	[1] [Total: 7]	
2	(a)	iron has iron has iron has		[3]	

[5]

[Total: 8]

NOT: appearance e.g. shiny

zinc copper

ACCEPT: comparative statements relating to potassium

(b) potassium hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1)

no reaction (1)

	Page 3		Mark Scheme	Syllabus	
			IGCSE – October/November 2013	0439	
3	(a)	(i)	fractional distillation (liquid) air	Cambrid	
		(ii)	cracking / heat in presence of catalyst of alkane / petroleum to give an alkene and hydrogen	Syllabus 0439 A Day of the state of the sta	
			OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)		
			OR: from methane (1) react water / steam (1) heat catalyst (1) only ACCEPT: water with methane or electrolysis		
	(b)	(i)	the pair with both graphs correct is C NOTE: mark (b)(ii) independent of (b)(i)	[1]	
		(ii)	high pressure favours side with lower volume / fewer r this is RHS / product / ammonia %NH ₃ / yield increases as pressure increases	moles [1] [1] [1]	
			the forward reaction is exothermic exothermic reactions favoured by low temperatures %NH ₃ / yield decreases as temperature increases ACCEPT: reverse arguments	[1] [1] [1]	
		(iii)	increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy particles need to		
			OR: economic rate at lower temperature so higher yie	ld [Total: 14]	
4	(a)	(i)	(mass at t =0) – (mass at t = 5) NOTE: must have mass at t = 5 not final mass	[1]	
		(ii)	fastest at origin slowing down between origin and flat section gradient where gradrient = 0 three of above in approximately the correct positions	= 0 [2]	
		(iii)	3 correct comments about gradient = [2] 2 correct comments about gradient = [1] 1 correct comment about gradient = [0]	[2]	
	(b) start at origin and smaller gradient same final mass just approximate rather than exact				

Doga 4			ı İ	Mark Calcarea Cullabus				
	Page 4		+	Mark Scheme IGCSE – October/November 2013	Syllabus 0439	OB.		
	(c)	(i) (ii)	lowe	ller surface area er collision rate ecules have more energy de more frequently / more molecules have enough e	energy to react	Papa Cambridge		
	(d)) number of moles of HCl in $40\mathrm{cm^3}$ of hydrochloric acid, concentration $2.0\mathrm{mol}$ / $\mathrm{dm^3}$ = 0.04×2.0 = 0.08 maximum number of moles of $\mathrm{CO_2}$ formed = 0.04 mass of one mole of $\mathrm{CO_2}$ = $44\mathrm{g}$ maximum mass of $\mathrm{CO_2}$ lost = 0.04×44 = $1.76\mathrm{g}$				[1] [1] [1] [1]		
5	(a)	(i) (ii)	they	e same molecular formula / both are C ₅ H ₁₂ have different structural formulae / different structure -CH ₂ -CH=CH-CH ₃ / any other correct isomer	res	[1] [1] [1]		
	(b)	(i)	NOT dibro	-(Br)-CH₂Br Γ: C₂H₄Br₂ omoethane ΓE: numbers not required but if given must be 1, 2		[1] [1]		
		(ii)		-CH ₂ -CH ₃ Γ: C ₃ H ₈ pane		[1] [1]		
		(iii)	buta	-CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ inol ibers not required but if given must be correct and m	natch formula	[1] [1]		
	(c)	(i)		-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]		
		(ii)	colo	/ purple urless Γ: clear		[1] [1]		
	(d)	cor	rect re	I(CN)-CH ₂ -CH(CN)- epeat unit CH ₂ -CH(CN) at least 2 units in diagram tion		[1] [1] [1] [Total:16]		

Page 5	Mark Scheme	Syllabus	.0
	IGCSE – October/November 2013	0439	123

6	(a)	(i)	(attractive force be and (negative) ele opposite charges a electrostatic attrac	attract ONLY [1]	Sambridge		
		(ii)	NOT: atoms / prot	ers of lead ions / cations / positive ions ons / nuclei h other / the bonds are non-directional	[1] [1]		
	(b)	(i)	anhydrous cobalt of ACCEPT: hydrous	chloride becomes hydrated	[1]		
		(ii)	carbon dioxide is a sodium hydroxide	acidic and calcium oxide are bases / alkalis	[1] [1]		
		(iii) Any two of: water, calcium car ACCEPT: sodium		bonate and sodium carbonate bicarbonate	[2]		
	(c)	number of moles of CO_2 formed = 2.112 / 44 = 0.048 number of moles of H_2O formed = 0.432 / 18 = 0.024			[1] [1]		
		χ =	x = 2 and $y = 1$ NOT : ecf from this line				
		OH) ₂ / Pb(OH) ₂ . 2PbCO ₃	[1]				
					[Total:12]		
7	(a)	(i)	hydrogen (atoms) NOT: substitute	replaced by (atoms) of a different element e.g. chlorine	[1]		
		(ii)	light required		[1]		
	(b)	exothermic reaction gives out energy endothermic reaction absorbs		[1]			
			es in energy	IDSOFDS	[1]		
	(c)	C-F C <i>l</i> -(energy +412 +242 +654	[1]		
		bonds formed C-C <i>l</i> H-C <i>l</i>		energy -338			
		tota ene	ol al energy ergy change gative sign indicates	-431 -769 -115 s exothermic	[1] [1] [1]		
					[Total: 8]		