

Cambridge International Examinations

Cambridge IGCSE	Cambridge International Examinations Cambridge International General Certificate of Secondary Education
CANDIDATE NAME	
CENTER NUMBER	CANDIDATE NUMBER

CHEMISTRY (US)

0439/33

Paper 3 (Extended)

May/June 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

	cose a gas from the following list to answer the questions below. Each gas may be the feethan once or not at all. ammonia carbon dioxide carbon monoxide fluorine hydrogen krypton nitrogen propene sulfur dioxide
	oose a gas from the following list to answer the questions below. Each gas may be re than once or not at all.
	ammonia carbon dioxide carbon monoxide fluorine
	hydrogen krypton nitrogen propene sulfur dioxide
(a)	It is a product of respiration. [1]
(b)	It polymerizes to form a poly(alkene) [1]
(c)	It is a noble gas. [1]
(d)	It is the main component of air [1]
(e)	It is a very reactive nonmetal. [1]
(f)	It is used to kill microorganisms in fruit juice [1]
(g)	It burns to form water as the only product. [1]
	[Total: 7]

2

	3	O.	
Exp	plain each of the following in terms of the kinetic	particle theory.	•
(a)	The rate of most reactions increases at higher	temperatures.	6
			-
		[3	3]
(b)	A liquid has a fixed volume but takes up the shof the container but it does not have a fixed vo		е
	of the container but it does not have a fixed vo	nume.	
	liquid	gas	
			••

.....[3]

[Total: 6]

© UCLES 2014 [Turn over

MAN POR

3	(a)	Biol	ogical catalysts produced by microbes cause food to deteriorate and decay.
		(i)	ogical catalysts produced by microbes cause food to deteriorate and decay. What is the name of these biological catalysts?
		(ii)	Freezing does not kill the microbes. Suggest why freezing is still a very effective way of preserving food.
			[2]
	(b)	Pea	seeds grow in pods on pea plants.
		Giv	shly picked pea seeds contain a sugar. The sugar can form a polymer. e the structural formula of the polymer and name the other product of this polymerization ction.
			may represent the sugar by the formula:
			но————он
		stru	ctural formula of the polymer

(c)	Des	scribe how the pea plant makes a sugar such as glucose.
		Tanga da
		Name of the state
		[3]
		[Total: 9]
Mos	st of	n a blast furnace contains about 5% of the impurities – carbon, silicon, phosphorus and sulfur. this impure iron is used to make steels, such as mild steel, and a very small percentage is make pure iron.
(a)		cium oxide and oxygen are used to remove the impurities from the iron produced in the st furnace.
	(i)	State how these chemicals are manufactured.
		calcium oxide
		oxygen
		[3]
	(ii)	Describe how these two chemicals remove the four impurities. Include at least one equation in your answer.

© UCLES 2014 [Turn over

(b)	(i)	Describe the structure of a typical metal such as iron. You may include a dia
		TO TO
		[2]
	(ii)	Explain why pure iron is malleable.
		[2]
(iii)	Mild steel is an alloy of iron and carbon. Suggest why mild steel is harder than pure iron.
		[2]
		[Total: 14]

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

The conditions in the reaction chamber are:

- a pressure of 200 atmospheres,
- a catalyst of finely divided iron,
- a temperature of 400 to 450 °C.

(a)	Wha	at are the two advantages of using a high pressure? Give a reason for both.	
	adv	antage 1	
	reas	son	
	adv	antage 2	
	reas	son	
			 [4]
(b)		gher temperature would give a faster reaction rate. y is a higher temperature not used?	
(c)	(i)	Why is the iron catalyst used as a fine powder?	
	(ii)	Give two reasons why a catalyst is used.	

www.PapaCambridge.com

www.PapaCambridge.com (d) The equilibrium mixture leaving the reaction chamber contains 15% ammonia. the ammonia could be separated from the mixture.

	boiling point/°C
hydrogen	-253
nitrogen	-196
ammonia	-33

		ro

(e) Ammonia is used to make nitrogen trifluoride, NF₃. Nitrogen trifluoride is essential to the electronics industry. It is made by the following reaction.

Determine if the above reaction is exothermic or endothermic using the following bond energies and by completing the following table. The first line has been done as an example. Bond energy is the amount of energy, in kJ/mole, needed to break or make one mole of the bond.

bond	bond energy in kJ/mole
N-H	390
F-F	155
N-F	280
H-F	565

bond	energy change/kJ
N-H	(3 × 390) = 1170
F-F	
N-F	
H-F	

141
Γ.1

[Total: 16]

The alkanes are a family of saturated hydrocarbons. Their reactions include combus and substitution. (a) (i) What is meant by the term hydrocarbon? What is meant by the term *saturated*?[1] (b) (i) What is the general formula for the homologous series of alkanes? Calculate the mass of one mole of an alkane with 14 carbon atoms.[2] (c) The complete combustion of hydrocarbons produces carbon dioxide and water only. (i) Write the equation for the complete combustion of nonane, C_oH₂₀. [2] 20 cm³ of a gaseous hydrocarbon was mixed with an excess of oxygen, 200 cm³. The mixture was ignited. After cooling, 40 cm³ of oxygen and 100 cm³ of carbon dioxide remained. Deduce the formula of the hydrocarbon and the equation for its combustion. All volumes were measured at r.t.p..

© UCLES 2014 [Turn over

.....[3]

(d)	d) Cracking is used to obtain short-chain alkanes, alkenes and hydrogen from long-c.						
	(i)	Give a use for each of the three products listed above.					
		short-chain alkanes					
		alkenes					
		hydrogen[3]					
	(ii)	Write an equation for the cracking of decane, $C_{10}H_{22}$, which produces two different alkenes and hydrogen as the only products.					
		[1]					
(e)	Chl	orine reacts with propane in a substitution reaction to form 1-chloropropane.					
		$CH_3-CH_2-CH_3 + Cl_2 \rightarrow CH_3-CH_2-CH_2-Cl + HCl$					
	(i)	What is the essential condition for the above reaction?					
		[1]					
	(ii)	There is more than one possible substitution reaction between chlorine and propane. Suggest the structural formula of a different product.					
		[1]					
		[Total: 16]					

W.	0	Abridge.com
	apac	
	di	36
		Tide
 		i.co
		13

7	Aluminum	is obtained	from purified	l alumina,	Al_2O_3 , by	electrolysis.
---	----------	-------------	---------------	------------	----------------	---------------

		2
(a)		mina is obtained from the main ore of aluminum. te the name of this ore.
		[1]
(b)		scribe the extraction of aluminum from alumina. Include the electrolyte, the electrodes and reactions at the electrodes.
		[6]
(c)		minum is resistant to corrosion. It is protected by an oxide layer on its surface. e thickness of this oxide layer can be increased by anodizing.
	(i)	State a use of aluminum due to its resistance to corrosion.
		[1]
	(ii)	Anodizing is an electrolytic process. Dilute sulfuric acid is electrolyzed with an aluminum object as the anode. The thickness of the oxide layer is increased. Complete the equations for the reactions at the aluminum anode.

.....OH⁻
$$\rightarrow$$
 O₂ + 2H₂O +e⁻
....Al + \rightarrow Al₂O₃ [4]

[Total: 12]

DATA SHEET The Periodic Table of the Elements

0	T 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 X © Neon	40 Ar Argon	Kypton 36 Kypton	131 X X x x x x x x x x x x x x x x x x x	Radon 86		175 Lutetium	Lr Lawrendum 103	Da Cambrida
₹		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 H lodine	At Astatine 85		Yb Ytterbium 70	Nobelium 102	13
5		16 Oxygen	32 S Sulfur 16	Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thullum 69	Mendelevium 101	
>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium	
≥		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
≡		11 Boron 5	27 A1 Aluminum	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98	pressure
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97	iture and
				64 Copper 29	108 Ag Silver	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96	ı tempera
2				59 Nickel Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	ո³ at roon
dnoib				59 Co Cobalt	103 Rh Rhodium	192 I r Iridium		Sm Samarium 62		s is 24 dm
	Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium	The volume of one mole of any gas is $24\ dm^3$ at room temperature and pressure (r.t.p.).
		ı		Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U	ne mole
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91	lume of o
				51 Vanadium	93 Nb Niobium	181 Ta Tanantanum 73		140 Ce Cerium 58	232 Th Thorium	The vo
				48 T Titanium	2r Zrconium 40	178 Hf Hafnium 72	'		nass number	
				Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	Ac Actinium t	series ries	 a = relative atomic mass x = atomic symbol b = proton (atomic) number 	
=		9 Be Beryllium	Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	а Х Ф	
_		7 Lithium 3	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	Caesium 55	Francium 87	58-71 Lai 30-103 Au	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.