CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

D	ann '	2	Mark Scheme	Su A Door
F	age 2	_	Cambridge IGCSE – October/November 2014	043 8 Der
		<u> </u>	Cambridge 1000E October/November 2014	Syl. A. Dan per 043 Odnobnidge
1	(a)	Ма	tch the following pH values to the solutions given below.	My.
		1	3 7 10 13	Top
		The	e solutions all have the same concentration.	oc.
		امد		
			ution ueous ammonia, weak base pH 10	
		dilu	te hydrochloric acid, a strong acid 1	
			ueous sodium hydroxide, a strong base 13	
			ueous sodium chloride, a salt 7 Ite ethanoic acid, a weak acid 3	[5]
		unc	tte ethanoic acid, a wear acid	اوا
	(b)	Нус	drochloric acid strong acid or ethanoic acid weak acid	[1]
			: hydrochloric acid completely ionised or ethanoic acid	
			tially ionised Irochloric acid greater concentration of/more H ⁺ ions (than ethanoic a	cid) [1]
		Hyc	nochione acid greater concentration of more in long (than ethanole a	ciu) [1]
	(c)	Ra	te of reaction with Ca, Mg, Zn, Fe	[1]
		Str	ong (hydrochloric) acid bubbles faster or more bubbles or dissolves fa	aster [1]
			: rate of reaction with (metal) carbonate ong (hydrochloric) acid faster or more bubbles or dissolves faster (onl	[1] v if
			bonate insoluble)	[1]
		OR	: electrical conductivity	[1]
			ong (hydrochloric) acid better conductor	[1]
				[Total: 9]
				[Total. 9]
2	(a)	sof	t because weak forces between layers/sheets/rows	[1]
		lav	ers can slip/slide	[1]
		lay	ers carr siip/siide	נין
		god	od conductor because electrons can move/mobile	[1]
	(b)		soft: pencils or lubricant or polish	[1]
		god	od conductor: electrodes or brushes (in electric motors)	[1]
	(c)	(i)	every silicon atom is bonded/attached to 4 oxygen atoms or every or	xygen
	` '	()	bonded/attached to two silicon atoms	[1]
		(ii)	Any two from:	
			high melting point/boiling point hard	
			colourless crystals/shiny	
			poor/non-conductor of electricity/insulator	
			insoluble in water	[2]

[Total: 8]

Р	age 3	Mark Scheme Cambridge IGCSE – October/November 2014	Syl. Oer
3		Any two from: bleach/making wood pulp/making paper food/fruit juice/wine preservative fumigant/sterilising/insecticide	a Cambridge Con
	(b)	heating/roasting/burning (zinc sulfides)	[1]

- **(b)** heating/roasting/burning (zinc sulfides) [1] in air/oxygen COND on M1 [1]
- (c) (i) V_2O_5 [1]
 - (ii) position of equilibrium shifts right/yield increases [1] [1] to save energy
 - (iii) faster reaction/rate [1]
 - more collisions per second/higher collision frequency [1]
 - fewer moles/molecules (of gas) on right [1]
- (so) position of equilibrium shifts right/yield increases [1]
- (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [1]

[Total: 12]

(a) (i) insufficient/limited oxygen [1] or 2C + $O_2 \rightarrow 2CO$

coke/carbon reacts with carbon dioxide [1] or
$$C + CO_2 \rightarrow 2CO$$

- (ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ species (1) balancing (1) [2]
- (b) (i) carbon dioxide [1]
 - [2] (ii) CaO + SiO₂ \rightarrow CaSiO₃ [1] each side correct
 - (iii) (molten) iron higher density (than slag) [2]
 - (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) [1]
- (c) (i) air/oxygen and water (need both) [1]

		2.
Page 4	Mark Scheme	Syl. oer
	Cambridge IGCSE – October/November 2014	043

- (ii) aluminium oxide layer is impervious or non-porous or passive or unreactive or will not allow water/air to pass through it (rust allows passage of water or air **or** it flakes off)
- (d) (i) zinc more reactive (than iron/steel) [1] loses electrons electrons move (from zinc) to iron [1] Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised or zinc is anodic **or** zinc forms positive ions **or** zinc forms Zn²⁺ **or** iron and steel don't
 - react with air/water or iron and steel are not oxidised or iron and steel do not form ions or iron and steel do not lose electrons or iron and steel are cathodic
 - (ii) R to L in wire [1]

[1]

[Total: 19]

[Total: 7]

- (iii) $2H^+ + 2e^- \rightarrow H_2$ species (1) balancing (1)
- 5 (a) nitrogen and oxygen react [1] at high temperatures (in engine) [1]
 - (b) M1 carbon monoxide (converted to) carbon dioxide or 2CO + $O_2 \rightarrow 2CO_2$ [1]
 - M2 (by) oxides of nitrogen (which are reduced to) nitrogen or 2NO \rightarrow N₂ + O₂ or 2NO₂ \rightarrow N₂ + 2O₂ [1]
 - M3 hydrocarbons (burn) making water [1]
 - M4 products: any two from: carbon dioxide, water, nitrogen [1]
 - (c) lead compounds are toxic or brain damage or reduce IQ or nausea or kidney failure or anaemia [1]
- (a) (i) butanoic acid 6 [1] methanol [1]
 - (ii) number of moles of ethanoic acid = 0.1 [1] number of moles of ethanol = 0.12(0)[1] the limiting reagent is ethanoic acid [1]
 - number of moles of ethyl ethanoate formed = 0.1 [1] maximum yield of ethyl ethanoate is 8.8 g [1]

Page 5	Mark Scheme	Syl Sper
	Cambridge IGCSE – October/November 2014	043

7

Daga 5	: 1	Mark Scheme	Su A Por
Page 5	1	Cambridge IGCSE – October/November 2014	043 & oer
` ,	two	rect ester linkage [1] ester linkages (COND on M1) tinuation (COND on M2)	Sylvarida per 043 Part Oper 04
(c)	(i)	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow	[1] [1] [1]
		ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple	[1] [1] [1]
((ii)	ester 1 COND alkyl group is C_nH_{2n+1} which is NOT $C_{17}H_{33}$ or $C_{17}H_{35}$ is C_nH_{2n+1} or less hydrogen	[1] [1]
(iii)	soap or (sodium) salt (of a carboxylic acid) or carboxylate	[1]
		alcohol	[1]
			[Total: 17]
(a)	(i)	$6Li + N_2 = 2Li_3N$ species (1) balancing (1)	
((ii)	N ³⁻ ion drawn correctly	[1]
		Charges correct (minimum 1 × Li ion and 1 nitride ion)	[1]
(b)	(i)	$3\times shared$ pairs between N and $3\times F$	[1]
		only 2 non-bonding electrons on N, 6 non-bonding electrons on each (COND on first point)	n F [1]
((ii)	Strong attractive forces/strong ionic bonds in lithium nitride	[1]
		weak (attractive) forces between molecules in NF ₃	[1]

[Total: 8]