Cambridge International Examinations | Cambridge
IGCSE | Cambridge International Examinations Cambridge International General Certificate of Secondary Education | |--------------------|---| | CANDIDATE
NAME | | | CENTER
NUMBER | CANDIDATE NUMBER | **CHEMISTRY (US)** Paper 3 (Extended) May/June 2015 1 hour 15 minutes 0439/33 Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Center number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 12. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. © UCLES 2015 This document consists of 12 printed pages. | Use you | ur copy of the Periodic Table to help you answer these questions. edict the formula of each of the following compounds. aluminum fluoride | |---------------|---| | (a) Pre | edict the formula of each of the following compounds. | | (i) | aluminum fluoride | | (ii) | arsenic oxide[1] | | (iii) | silicon bromide[1] | | (b) De | duce the formula of each of the following ions. | | (i) | phosphide[1] | | (ii) | barium[1] | | (iii) | francium[1] | | . , | aw a diagram showing the arrangement of the valency electrons in one molecule of the valent compound carbon dioxide. | Use x to represent an electron from a carbon atom. Use o to represent an electron from an oxygen atom. [3] [Total: 9] 1 www.PapaCambridge.com **2** This question is concerned with the following oxides. aluminum oxide carbon monoxide copper(II) oxide silicon(IV) oxide sodium oxide sulfur dioxide zinc oxide Choose **one** oxide from the above list to match each of the following descriptions. An oxide may be used once, more than once or not at all. | (a) | This oxide does not react with acid or alkali. | [1] | |-----|--|------| | (b) | This oxide reacts with water to give a strong alkali solution. | [1] | | (c) | This oxide is used as a bleach. | [1] | | (d) | This oxide is amphoteric. | [1] | | (e) | This oxide has a giant covalent structure. | [1] | | (f) | This oxide is soluble in water and it is acidic. | [1] | | | [Total | : 6] | © UCLES 2015 [Turn over | | icklime, which is calcium oxide, is made by heating limestone in a furnace. $CaCO_3(s) \iff CaO(s) + CO_2(g)$ e reaction does not come to equilibrium. Suggest why the conversion to calcium oxide is complete. | |-----|---| | | 4 | | Qui | icklime, which is calcium oxide, is made by heating limestone in a furnace. | | | $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ | | The | e reaction does not come to equilibrium. | | (a) | Suggest why the conversion to calcium oxide is complete. | | | [1] | | (b) | Calcium hydroxide, slaked lime, is made from calcium oxide. | | | Write an equation for this reaction. | | | [2] | | (c) | Calculate the maximum mass of calcium oxide which could be made from 12.5 tons of calcium carbonate. 1 ton = 1×10^6 g. | | | | | | [2] | | (q) | Limestone is used in agriculture to reduce the acidity of soil and for the desulfurization of flue | - gases in power stations. - (i) Most crops thrive in soils whose pH is close to 7. Calcium carbonate, which is insoluble in water, and calcium oxide, which is slightly soluble in water, are both used to reduce the acidity of soils. Suggest two advantages of using calcium carbonate for this purpose. | | 2 | [2] | |-------|---|-----| | (ii) | Explain the chemistry of desulfurization of flue gases. | | | | | | | | | | | | | | | | | [3] | | /:::\ | Civo and other use of calcium carbonate | | (iii) Give one other use of calcium carbonate. [Total: 11] 4 © UCLES 2015 | (a) (i) | Coal is a solid fossil fuel. | |---------|--| | | Coal is a solid fossil fuel. Name another fossil fuel. | | (ii) | Explain what is meant by the term fossil fuel. | | | [2] | | | e burning of fossil fuels is largely responsible for the formation of acid rain. Two of the acids acid rain are sulfuric acid and nitric acid. | | (i) | Explain how the combustion of coal can form sulfuric acid. | | | | | (ii) | High temperatures generated by the combustion of fossil fuels can lead to the formation | | | of nitric acid. Explain. | | | | | (iii) | Nitric acid contains nitrate ions. | | | Describe a test for nitrate ions. | | | [2] | | (iv) | Explain how you could determine which one of two samples of acid rain had the higher concentration of hydrogen ions. | | | [2] | [Total: 13] [Turn over compound control 5 The law of constant composition states that all pure samples of a compound contelements in the same proportion by weight. A typical experiment to test this law is to prepare the same compound by different methods then show that the samples have the same composition. Methods of making copper(II) oxide include: - heating copper carbonate, - heating copper hydroxide, - heating copper nitrate, - heating copper foil in air. - (a) Complete the following equations. | (i) | $CuCO_3 \rightarrow \dots + \dots + \dots$ | [1] | |-------|---|-----| | (ii) | $Cu(OH)_2 \rightarrow \dots + \dots$ | [1] | | (iii) | $2Cu(NO_3)_2 \rightarrow \dots + 4NO_2 + \dots$ | [2] | | | | | - **(b)** Copper oxide can be reduced to copper by heating in hydrogen. - (i) What color change would you observe during the reduction? [1] - (ii) Explain why the copper must be allowed to cool in hydrogen before it is exposed to air. - (iii) Name another gas which can reduce copper(II) oxide to copper. - (iv) Name a solid which can reduce copper(II) oxide to copper.[1] (c) The table below shows the results obtained by reducing the copper(II) oxide different methods to copper. (i) Complete the table. | 7
s the results obtained
oper. | I by reducing the | copper(II) oxide | Papa Cambridge Com | |---|---|--|--| | mass of copper(II) oxide/g | mass of copper/g | percentage
copper/% | COM | | 2.37 | 1.89 | 79.7 | 1 | | 2.51 | 1.99 | | 1 | | 2.11 | 1.68 | | 1 | | 2.29 | 1.94 | | | | С | mass of copper(II) oxide/g 2.37 2.51 2.11 | mass of copper(II) oxide/g 2.37 2.51 1.89 2.11 1.68 | 2.37 1.89 79.7
2.51 1.99
2.11 1.68 | (ii) One of the samples of copper(II) oxide is impure. Identify this sample and suggest an explanation why the percentage of copper in this sample is bigger than in the other three samples. [Total: 13] [2] [Turn over © UCLES 2015 - mm. Da - 6 Chemical reactions are always accompanied by an energy change. - (a) Aluminum is extracted by the electrolysis of a molten mixture which contains aluminum Al_2O_3 . This decomposes to form aluminum at the negative electrode and oxygen at the poelectrode. | (i) | Write an ionic equation for the reaction at the negative electrode. | | |-----|---|-----| | | | [2] | (ii) Complete the ionic equation for the reaction at the positive electrode. $$20^{2-} \rightarrow \dots + \dots$$ [2] (iii) Is the reaction exothermic or endothermic? Explain your answer. (b) The cell shown below can be used to determine the order of reactivity of metals. | (i) | Is the reaction in the cell exothermic or endothermic? Explain your answer. | | |-----|---|----| | | | | | | [| 1] | www.papaCambridge.com (ii) Explain why the mass of the magnesium electrode decreases and the mass electrode increases. (iii) How could you use this cell to determine which is the more reactive metal, magnesium or manganese? (c) The combustion of propane, C₃H₈, is exothermic. Give an equation for the complete combustion of propane.[2] (d) Photosynthesis is an unusual endothermic reaction. Where does the energy for photosynthesis come from? (ii) Give the word equation for photosynthesis.[1] [Total: 14] [Turn over © UCLES 2015 ## WWW. Papac 7 (a) Alkanes and alkenes are both hydrocarbons. (i) How does the structure of alkenes differ from the structure of alkanes? (ii) Is the straight-chain hydrocarbon $C_{22}H_{44}$ an alkane or an alkene? Explain your choice.[2] (iii) Describe how you could distinguish between pentane and pentene. test result with pentane result with pentene[3] **(b)** Alkenes polymerize to form poly(alkenes). (i) The alkene 1,1-dichloroethene has the structural formula given below. Draw the structural formula of the polymer formed by the polymerization of 1,1-dichloroethene. [3] (ii) The structural formula of a different polymer is given below. www.PapaCambridge.com Deduce the structural formula of the monomer used to form this polymer. | | | [2] | |-------|--|-----| | (iii) | There are two types of polymerization - addition and condensation. | | | | Explain the difference between them. | | | | | | | | | | | | | [2] | | (iv) | There are two types of condensation polymer. | | | | Give the name of one type of condensation polymer. | | | | | | | | | [1] | | | [Total: | 14] | | - | |---| |---| To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.