




## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

| CANDIDATE<br>NAME |                            |                     |                    |
|-------------------|----------------------------|---------------------|--------------------|
| CENTER<br>NUMBER  |                            | CANDIDATE<br>NUMBER |                    |
| CHEMISTRY (U      | S)                         |                     | 0439/21            |
| Paper 2           |                            | Octo                | ober/November 2015 |
|                   |                            |                     | 1 hour 15 minutes  |
| Candidates answ   | wer on the Question Paper. |                     |                    |
| No Additional Ma  | aterials are required.     |                     |                    |

## **READ THESE INSTRUCTIONS FIRST**

Write your Center number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

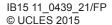
Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.


You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

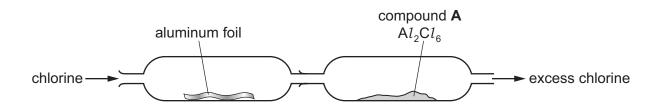
This document consists of 16 printed pages.





[Turn over

1 The structures of six compounds are shown below.


В C  $\mathbf{A}$ D Ε H—C1 Ba<sup>2+</sup> SO, 2-SO<sub>4</sub>2-SO<sub>4</sub>2-Ba<sup>2+</sup> Ba<sup>2+</sup> NH<sub>4</sub>  $(NH_4^+$ SO<sub>4</sub><sup>2-</sup> SO<sub>4</sub>2-Ba<sup>2+</sup> Ba<sup>2+</sup> Ba<sup>2+</sup> SO<sub>4</sub><sup>2-</sup> (NH<sub>4</sub>† C1 Cl- $NH_4$ 

Answer the following questions about these substances. Each compound may be used once, more than once or not at all.

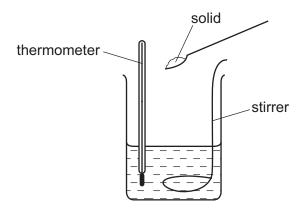
(a) Which substance, A, B, C, D, E or F,

| (i)  | gives a white precipitate on addition of an aqueous solution of sodium sulfate, | <br>Γ <b>1</b> . |
|------|---------------------------------------------------------------------------------|------------------|
|      | Sociali Saliale,                                                                | <br>ι'.          |
| (ii) | is a component of many fertilizers,                                             | <br>[1]          |
| iii) | contains a Group III element,                                                   | <br>[1]          |
| iv)  | is an acidic gas at room temperature,                                           | <br>[1]          |
| (v)  | turns anhydrous cobalt chloride pink,                                           | <br>[1]          |
| vi)  | is the main component of natural gas?                                           | [1]              |

**(b)** Compound **A** can be made by direct combination of chlorine and aluminum using the apparatus shown below.



- (i) On the diagram above, draw an arrow to show where heat is applied. [1]
- (ii) Suggest **one** safety precaution that should be taken when carrying out this experiment.


......[1]

(iii) Complete the symbol equation for this reaction.

$$2Al + \dots Cl_2 \rightarrow Al_2Cl_6$$
 [1]

[Total: 9]

2 A student measures the maximum temperature changes when five different solids, **P**, **Q**, **R**, **S** and **T**, are dissolved separately in water. She uses the apparatus shown below.

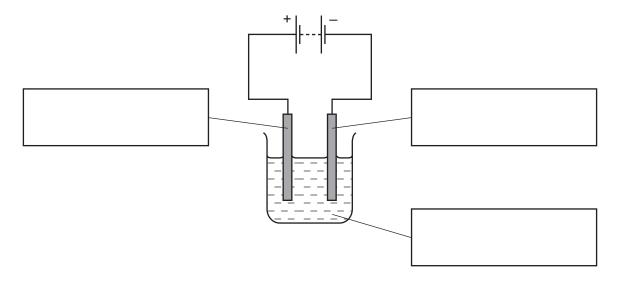


| (  | a) | The student stirs | the | mixture as   | each  | solid is adde | ed.        |
|----|----|-------------------|-----|--------------|-------|---------------|------------|
| ٠, | ~, | THE CLASSIC CLIC  |     | IIIIXtalo ao | OGOLI | cona io aaac  | <i>-</i> . |

|     | Suggest why she does this.                                                                   |    |
|-----|----------------------------------------------------------------------------------------------|----|
|     |                                                                                              |    |
|     |                                                                                              | [1 |
| (b) | Suggest <b>two</b> factors which should be kept the same to make the experiment a fair test. |    |
|     | 1                                                                                            |    |
|     | 2                                                                                            | [2 |

(c) The table of results is shown below.

| solid added | initial temperature of the water/°C | highest temperature of the solution/°C |
|-------------|-------------------------------------|----------------------------------------|
| Р           | 20                                  | 24                                     |
| Q           | 18                                  | 23                                     |
| R           | 19                                  | 16                                     |
| S           | 22                                  | 23                                     |
| Т           | 20                                  | 18                                     |


| (i) | Which solid gave the greatest temperature change when dissolved in water? |     |
|-----|---------------------------------------------------------------------------|-----|
|     |                                                                           | [1] |
| ii) | Which solids gave an endothermic energy change when dissolved in water?   |     |
|     | and                                                                       | [2] |

| (d) | Rad   | lioactive isotopes ca                             | ın be used as a s                       | source of energy.    |                                |          |
|-----|-------|---------------------------------------------------|-----------------------------------------|----------------------|--------------------------------|----------|
|     | (i)   | Which <b>one</b> of the for Put a ring around the | • .                                     |                      | otope?                         |          |
|     |       | <sup>12</sup> <sub>6</sub> C                      | <sup>235</sup> <sub>92</sub> U          | 1 <sub>1</sub> H     | <sup>65</sup> <sub>30</sub> Zn | [1]      |
|     | (ii)  | An isotope of radiu                               | m, Ra, has 226 n                        | ucleons in its nuc   | leus.                          |          |
|     |       | How many neutrons<br>Use your Periodic 1          |                                         | oe contain?          |                                |          |
|     |       |                                                   |                                         |                      |                                | [1]      |
|     | (iii) | Give <b>one</b> use of rac                        | dioactive isotope                       | s in medicine.       |                                |          |
|     |       |                                                   |                                         |                      |                                | [1]      |
| (e) | Fra   | ctions obtained from                              | the distillation o                      | f petroleum are als  | so sources of energy.          |          |
|     | (i)   | Which <b>one</b> of the for Put a ring around the |                                         |                      | for jet aircraft?              |          |
|     |       | bitumer                                           | n gasoline                              | kerosene             | naphtha                        | [1]      |
|     | (ii)  | Heptadecane, C <sub>17</sub> H                    | <sub>36</sub> , is present in t         | he fuel oil fraction |                                |          |
|     |       | Complete the equa                                 | tion for the crack                      | ing of heptadecar    | e to form two hydrocarbons.    |          |
|     |       |                                                   | $C_{17}H_{36} \rightarrow C_{12}h_{36}$ | H <sub>26</sub> +    |                                | [1]      |
|     |       |                                                   |                                         |                      | [Tot                           | :al: 11] |

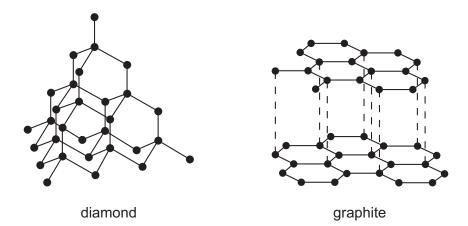
**3** (a) Nickel is extracted from nickel(II) oxide, NiO, by heating with carbon.

Complete the symbol equation for this reaction.

- (b) Nickel is refined by electrolysis.
  - (i) Complete the boxes to label the diagram below to show
    - the negative electrode (cathode),
    - the positive electrode (anode),
    - the electrolyte.

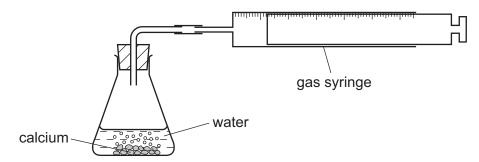


| (11) | At which electrode is the pure hicker formed? |
|------|-----------------------------------------------|
|      |                                               |
|      |                                               |

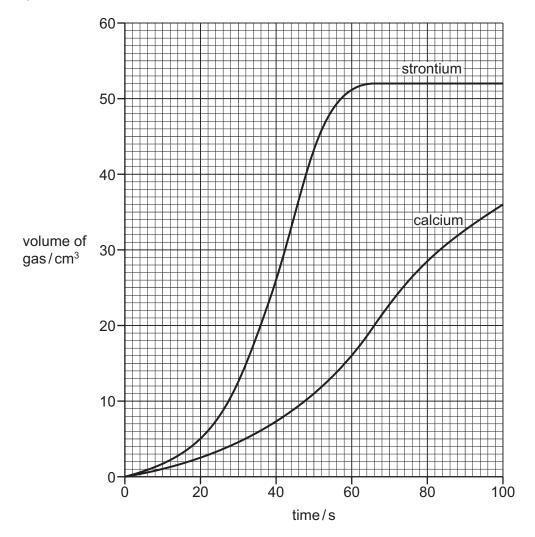

- (c) Molten nickel(II) chloride can be electrolyzed using graphite electrodes.

  - (ii) Give two reasons why graphite is used for electrodes.

| 1. |     |
|----|-----|
| 2. |     |
|    | [2] |


[2]

(d) The structures of diamond and graphite are shown below.




| (i)  | Explain how the structure of diamond relates to its use in cutting hard materials. |
|------|------------------------------------------------------------------------------------|
|      |                                                                                    |
|      | [2]                                                                                |
| (ii) | Explain how the structure of graphite relates to its use as a lubricant.           |
|      |                                                                                    |
|      | [2]                                                                                |
|      | [Total: 13]                                                                        |

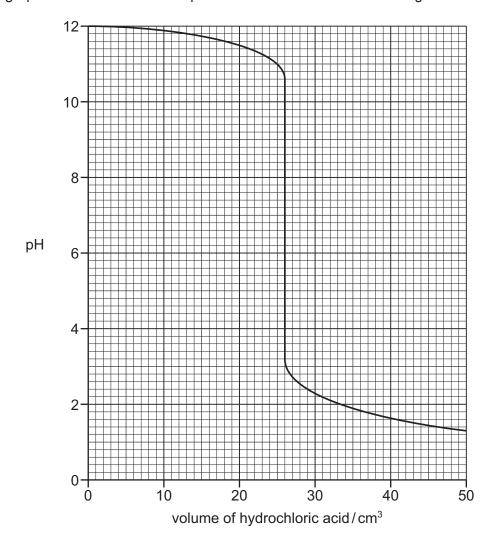
**4** A teacher demonstrated the reactivity of calcium with water. He used the apparatus shown below.



(a) The teacher measured the volume of gas given off at various times during the reaction. He then repeated the experiment using strontium but keeping all the conditions the same. The graph obtained from the results is shown below.



| (1) | Explain now | the graph sho | ws that strontium | is more reactive | than calcium. |
|-----|-------------|---------------|-------------------|------------------|---------------|
|-----|-------------|---------------|-------------------|------------------|---------------|


....

(ii) For the reaction between calcium and water, deduce the volume of gas produced in the first 50 seconds.

..... cm<sup>3</sup> [1]

|       | 3                                                                                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) | At what time was the reaction between strontium and water complete?                                                                                                                                                        |
|       | s [1]                                                                                                                                                                                                                      |
| (iv)  | How do you know from the graph that the reaction between calcium and water was <b>not</b> complete 100 seconds after the reaction started?                                                                                 |
|       | [1]                                                                                                                                                                                                                        |
| (v)   | Suggest how the rate of reaction changes when the same mass of calcium is used but in smaller pieces.                                                                                                                      |
|       | [1]                                                                                                                                                                                                                        |
| solu  | e solution formed at the end of the reaction between strontium and water is alkaline. It is a ution of strontium hydroxide. It is a teacher titrated this solution with hydrochloric acid using the apparatus shown below. |
|       | buret  25 cm³ strontium hydroxide solution                                                                                                                                                                                 |
| (i)   | What piece of apparatus should be used to put exactly 25.0 cm³ of the strontium hydroxide solution into the flask?                                                                                                         |
|       | [1]                                                                                                                                                                                                                        |
| (ii)  | A few drops of litmus solution was added to the flask.                                                                                                                                                                     |
|       | Explain why litmus is added to the flask and describe what happens to the litmus as the titration proceeds.                                                                                                                |
|       |                                                                                                                                                                                                                            |

(c) The graph below shows how the pH of the solution in the flask changes as the acid is added.



(i) Describe how the pH of the solution changes as the titration proceeds.

|     | *************************************** |
|-----|-----------------------------------------|
|     |                                         |
|     |                                         |
|     |                                         |
|     |                                         |
|     |                                         |
|     |                                         |
| (2) |                                         |

(ii) What volume of acid had been added when the solution had a neutral pH?

(iii) The symbol equation for the reaction is

$$Sr(OH)_2 + 2HCl \rightarrow SrCl_2 + 2H_2O$$

Give the name of the salt formed in this reaction.

| [1] |
|-----|

[Total: 13]

**5** A student left a cube of ice on a plate in a warm room. The diagrams below show what happened to the ice.



- (a) Describe and explain what happened to the ice. In your answer,
  - describe and explain the change of state which occurs,
    explain this change using the kinetic particle theory.

|                                                                                                                | •••   |
|----------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                |       |
|                                                                                                                |       |
|                                                                                                                |       |
|                                                                                                                |       |
|                                                                                                                | •••   |
|                                                                                                                |       |
|                                                                                                                |       |
| I and the second se | [ [ ] |

- (b) Water is used in industry and in the home.
  - (i) Give one use of water in industry.

| <br>[1 | 1] |  |
|--------|----|--|
|        |    |  |

(ii) Give one use of water in the home.

|  | [ | 1 | ] |
|--|---|---|---|
|--|---|---|---|

(c) The symbol equation for the reaction of lithium with water is shown below.

$$2Li(s) + 2H2O(I) \rightarrow 2LiOH(aq) + H2(g)$$

(i) Write the word equation for this reaction.

(ii) Describe **two** observations which can be made when lithium reacts with water.

| rol |
|-----|

(iii) Describe how the reactivity of potassium with water compares with the reactivity of lithium with water.

| (d)                                                                                                                   | Ethanol can be made by the reaction of steam with ethene.         |                                                          |            |                                                                |             |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|------------|----------------------------------------------------------------|-------------|
|                                                                                                                       | (i) Draw the structure of ethene showing all atoms and all bonds. |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                | [1]         |
|                                                                                                                       | (ii)                                                              | Des                                                      | scribe the | conditions required for this reaction.                         |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                | [2]         |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
| (e)                                                                                                                   | The                                                               | e tab                                                    | le below d | escribes the reaction of water or steam with different metals. |             |
|                                                                                                                       |                                                                   |                                                          | metal      | observations                                                   |             |
|                                                                                                                       |                                                                   |                                                          | calcium    | reacts rapidly with cold water                                 |             |
|                                                                                                                       |                                                                   |                                                          | cerium     | reacts slowly with hot water and very rapidly with steam       |             |
| cobalt reacts with steam when cobalt powder is very hot iron reacts very slowly with hot water and readily with steam |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   | reacts very slowly with hot water and readily with steam |            |                                                                |             |
| Put these metals in order of their reactivity.  least reactive  most reactive                                         |                                                                   |                                                          |            | n order of their reactivity.                                   |             |
|                                                                                                                       |                                                                   |                                                          |            | 9                                                              |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                | <br>[2]     |
|                                                                                                                       |                                                                   |                                                          |            |                                                                |             |
|                                                                                                                       |                                                                   |                                                          |            |                                                                | [Total: 16] |

0439/21/O/N/15

**6** When rubber is distilled, a chemical called isoprene is formed. The structure of isoprene is shown below.

| (a) | Deduce the molecular formula of isoprene.                                                    |     |  |  |
|-----|----------------------------------------------------------------------------------------------|-----|--|--|
|     |                                                                                              | [1] |  |  |
| (b) | Isoprene is an unsaturated compound.                                                         |     |  |  |
|     | Describe a test for an unsaturated compound.                                                 |     |  |  |
|     | test                                                                                         |     |  |  |
|     | result                                                                                       | [2] |  |  |
| (c) | Isoprene forms an addition polymer.                                                          |     |  |  |
|     | (i) What feature of the isoprene molecule is responsible for it forming an addition polymer  | ?   |  |  |
|     |                                                                                              | [1] |  |  |
|     | (ii) Give the name of another addition polymer.                                              |     |  |  |
|     |                                                                                              | [1] |  |  |
| (d) | Isoprene does <b>not</b> conduct electricity.                                                |     |  |  |
|     | Explain why.                                                                                 |     |  |  |
|     |                                                                                              | [1] |  |  |
| (e) | State the names of <b>two</b> substances formed when isoprene undergoes incomplete combustic | on. |  |  |
|     | and                                                                                          | [2] |  |  |

| (f) | Isoprene can be prepared from 3-methylbutan-1-ol.                |                   |  |  |  |  |  |
|-----|------------------------------------------------------------------|-------------------|--|--|--|--|--|
|     | To which group of compounds does 3-methylbu Tick <b>one</b> box. | ıtan-1-ol belong? |  |  |  |  |  |
|     | alcohols                                                         |                   |  |  |  |  |  |
|     | alkanes                                                          |                   |  |  |  |  |  |
|     | alkenes                                                          |                   |  |  |  |  |  |
|     | carboxylic acids                                                 |                   |  |  |  |  |  |
|     |                                                                  |                   |  |  |  |  |  |
|     |                                                                  | [Total: 9]        |  |  |  |  |  |

© UCLES 2015 0439/21/O/N/15

| 7 | (a) | Sodium | is in | Group | I of the | Periodic | Table. |
|---|-----|--------|-------|-------|----------|----------|--------|
|---|-----|--------|-------|-------|----------|----------|--------|

Describe the structure of a sodium atom. In your answer refer to,

|  | • | the type | and | number | of | each | subate | omic | particle | present |
|--|---|----------|-----|--------|----|------|--------|------|----------|---------|
|--|---|----------|-----|--------|----|------|--------|------|----------|---------|

• the charges on each type of subatomic particle,

| • | the position o | f each type of | f subatomic particle in the atom. |  |
|---|----------------|----------------|-----------------------------------|--|
|---|----------------|----------------|-----------------------------------|--|

| [5 |
|----|
|    |

- **(b)** Sodium carbide, Na<sub>2</sub>C<sub>2</sub>, reacts with water to form ethyne, C<sub>2</sub>H<sub>2</sub>.
  - (i) Complete the symbol equation for this reaction.

$$Na_2C_2$$
 + ..... $H_2O$   $\rightarrow$  ..... $NaOH$  +  $C_2H_2$ 

[2]

(ii) Ethyne is a hydrocarbon.

What is the meaning of the term *hydrocarbon*?

.....[1]

(iii) Calculate the relative formula mass of sodium carbide.

[1]

[Total: 9]

DATA SHEET
The Periodic Table of the Elements

|                                  |                                                    |                                                                        |                                |                                    |                                        |                                   |                                  | Gr                    | Group                              |                               |                                   |                                      |                                   |                                    |                                   |                                  |                                 |
|----------------------------------|----------------------------------------------------|------------------------------------------------------------------------|--------------------------------|------------------------------------|----------------------------------------|-----------------------------------|----------------------------------|-----------------------|------------------------------------|-------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|---------------------------------|
| _                                | =                                                  |                                                                        |                                |                                    |                                        |                                   |                                  |                       |                                    |                               |                                   | =                                    | ≥                                 | >                                  | 5                                 | =                                | 0                               |
|                                  |                                                    |                                                                        |                                |                                    |                                        |                                   | T<br>Hydrogen                    |                       |                                    |                               |                                   |                                      |                                   |                                    |                                   |                                  | 4 <b>He</b> Helium 2            |
| 7 <b>Li</b> Lithium              | P Be —                                             | <u> </u>                                                               |                                |                                    |                                        |                                   |                                  |                       |                                    |                               |                                   | 11<br>Boron<br>5                     | 12<br>Carbon<br>6                 | 14 <b>N</b> Nitrogen 7             | 16<br>Oxygen<br>8                 | 19 Fluorine                      | 20 <b>Ne</b> Neon 10            |
| Na Sodium                        | Mg<br>Magnesium                                    | Ē                                                                      |                                |                                    |                                        |                                   |                                  |                       |                                    |                               |                                   | 27<br><b>A1</b><br>Aluminum<br>13    | 28<br><b>Si</b><br>Silicon        | 31<br><b>P</b><br>Phosphorus<br>15 | 32<br>Sulfur<br>16                | 35.5 <b>C1</b> Chlorine          | 40<br><b>Ar</b><br>Argon        |
| 39 K Potassium                   | 40 <b>Ca</b> m Caldum 20                           | Scandium 21                                                            | 48 <b>Ti</b> Titanium 22       | 51<br>V<br>Vanadium<br>23          | 52<br><b>Cr</b><br>Chromium<br>24      | 55<br>Mn<br>Manganese<br>25       | 56<br><b>Fe</b><br>Iron<br>26    | 59<br>Cobalt          | 59<br><b>Ni</b><br>Nickel          | 64 <b>Cu</b> Copper 29        | 65 <b>Zn</b> Zinc 30              | 70<br><b>Ga</b><br>Gallium<br>31     | 73 <b>Ge</b> Germanium 32         | 75<br><b>AS</b><br>Arsenic<br>33   | Se Selenium 34                    | 80<br><b>Br</b><br>Bromine<br>35 | 84 <b>Kr</b><br>Krypton 36      |
| Rubidium 37                      | Strontium Strontium                                | 89 <b>Y</b>                                                            | 2r<br>Zirconium<br>40          | 93 Nb Niobium 41                   | 96<br><b>Mo</b><br>Molybdenum<br>42    | Tc<br>Technetium<br>43            | Ru<br>Ruthenium<br>44            | Rhodium 45            | 106 Pd Palladium 46                | 108 <b>Ag</b><br>Silver<br>47 | 112<br><b>Cd</b><br>Cadmium<br>48 | 115<br><b>In</b><br>Indium<br>49     | 119<br><b>Sn</b><br>Tin           | Sb<br>Antimony<br>51               | Te<br>Tellurium<br>52             | 127 <b>T</b> lodine 53           | 131<br><b>Xe</b><br>Xenon<br>54 |
| 133<br><b>CS</b><br>Cesium<br>55 |                                                    | 139 <b>La</b> Lanthanum 57 *                                           | 178 <b>Hf</b><br>Hafnium<br>72 | 181<br><b>Ta</b><br>Tantalum<br>73 | 184 <b>W</b> Tungsten 74               | 186<br><b>Re</b><br>Rhenium<br>75 | 190<br><b>Os</b><br>Osmium<br>76 | 192 <b>Ir</b> Iridium | 195 <b>Pt</b> Platinum 78          | Au Sold 799                   |                                   | 204<br><b>T t</b><br>Thallium<br>81  | 207 <b>Pb</b> Lead 82             | 209 <b>Bi</b> Bismuth              | Po<br>Polonium<br>84              | At<br>Astatine<br>85             | Radon 86                        |
| <b>Fr</b><br>Francium<br>87      | 226<br><b>Ra</b><br>m Radium<br>88                 | 227<br><b>Ac</b><br>Actinium 1                                         |                                |                                    |                                        |                                   |                                  |                       |                                    |                               |                                   |                                      |                                   |                                    |                                   |                                  |                                 |
| *58-71<br>190-10                 | *58-71 Lanthanoid serie<br>190-103 Actinoid series | *58-71 Lanthanoid series<br>190-103 Actinoid series                    |                                | 140 <b>Ce</b> Cerium               | 141<br><b>Pr</b><br>Praseodymium<br>59 | Neodymium<br>60                   | Pm<br>Promethium<br>61           | Sm<br>Samarium<br>62  | 152<br><b>Eu</b><br>Europium<br>63 | Gd<br>Gadolinium<br>64        | 159<br><b>Tb</b><br>Terbium<br>65 | 162<br><b>Dy</b><br>Dysprosium<br>66 | 165<br><b>Ho</b><br>Holmium<br>67 | 167<br><b>Er</b><br>Erbium<br>68   | 169<br><b>Tm</b><br>Thullum<br>69 | <b>Yb</b> Ytterbium 70           | Lutetium 71                     |
| Key                              | е <b>Х</b>                                         | a = relative atomic mass  X = atomic symbol b = proton (atomic) number | ic mass<br>ool<br>iic) number  | 232<br><b>Th</b><br>Thorium        | <b>Pa</b> Protactinium                 | 238<br><b>U</b><br>Uranium<br>92  | Neptunium                        | Pu<br>Plutonium<br>94 | Am<br>Americium<br>95              | Curium<br>96                  | <b>Bk</b> Berkelium               | Cf<br>Californium<br>98              | <b>Es</b><br>Einsteinium<br>99    | Fm<br>Fermium<br>100               | Md<br>Mendelevium<br>101          | Nobelium<br>102                  | <b>Lr</b><br>Lawrenciur<br>103  |

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).