

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME						
CENTER NUMBER		CANDIDATE NUMBER				
CHEMISTRY (U	S)		0439/31			
Paper 3 (Extend	led)	October/November 20				
		1	hour 15 minutes			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 12 printed pages.

(a) The symbols of six particles are shown below.

	Na ⁺ Ca ²⁺ Kr P Si O ²⁻
	ect from the list of particles to answer the following questions. A particle may be selected e, more than once or not at all.
(i)	Which two ions have the same electronic structure? [1]
(ii)	Which ion has the same electronic structure as an atom of argon? [1]
(iii)	Which atom can form an ion of the type X³-?[1]
(iv)	Which atom can form a hydride which has a formula of the type XH ₄ ? [1]
(b) (i)	How many protons, neutrons and electrons are there in one copper(II) ion $^{64}_{29}\text{Cu}^{2+}$?
	number of protons
	number of neutrons
	number of electrons[2]
(ii)	⁴⁵ Sc represents an atom of scandium.
	How many nucleons and how many charged particles are there in one atom of scandium?
	number of nucleons
	number of charged particles[2]
(c) Two	different atoms of sodium are $^{23}_{11}$ Na and $^{24}_{11}$ Na.
(i)	Explain why these two atoms are isotopes.
	[2]
(ii)	²⁴ Na is radioactive. It changes into an atom of a different element which has one more proton.
	Identify this element.
	[1]
(iii)	State two uses of radioactive isotopes.
	[2]

[Total: 13]

2

	scribe how to separate the following. In each example, give a description of the procedure used explain why this method works.
(a)	Copper powder from a mixture containing copper and zinc powders.
	procedure
	explanation
	[3]
(b)	Nitrogen from a mixture of nitrogen and oxygen.
	procedure
	explanation
	[3]
(c)	Glycine from a mixture of the two amino acids glycine and alanine. Glycine has the lower $R_{\rm f}$ value.
	procedure
	explanation
	[2]
(d)	Magnesium hydroxide from a mixture of magnesium hydroxide and zinc hydroxide.
	procedure
	explanation
	[3]
	[Total: 11]

3

Sul	furic	acid is made by the Contact process.	
(a)	Sul	fur is burned by spraying droplets of molten sulfur into air.	
	Sug	ggest and explain an advantage of using this method.	
(b)	The	e following equation represents the equilibrium in the Contact process.	
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
	_	ygen is supplied from the air. e composition of the reaction mixture is 1 volume of sulfur dioxide to 1 volume of oxygen	۱.
	Wh	at volume of air contains 1 dm³ of oxygen?	
		dm³	[1]
(c)	Sulf	fur dioxide is more expensive than air.	
	Wh	at is the advantage of using an excess of air?	
(d)		e forward reaction is exothermic. The reaction is usually carried out at a temperature betwe 0 and 450°C .	en
	(i)	What is the effect on the position of equilibrium of using a temperature above 450 $^{\circ}\text{C}?$ Explain your answer.	
	(ii)	What is the effect on the rate of using a temperature below 400 °C? Explain your answer.	<u>(-</u>)
			••••
			[3]

(e)	A lo	ow pressure, 2 atmospheres, is used. At equilibrium, about 98% SO ₃ is present.	
	(i)	What is the effect on the position of equilibrium of using a higher pressure?	
			[1]
	(ii)	Explain why a higher pressure is not used.	
			[1]
(f)	Nar	me the catalyst used in the Contact process.	
			[1]
(g)	Des	scribe how concentrated sulfuric acid is made from sulfur trioxide.	
			[2]
		[Total:	15]

			6	
1	(a)	Syr	nthetic polymers are disposed of in landfill sites and by burning.	
		(i)	Describe two problems caused by the disposal of synthetic polymers in landfill sites.	
				[2]
		(ii)	Describe one problem caused by burning synthetic polymers.	
				[1]
	(b)	Sta	te two uses of synthetic polymers.	
				[1]
	(c)	The	e structural formulae of two synthetic polymers are given below.	
			$\begin{array}{c cccc} \mathbf{CH}_2\mathbf{CH}\mathbf{CH}_2\mathbf{CH}_2 & \mathbf{DH}_2\mathbf{DH}_2 \\ & & \mathbf{DH}_3\mathbf{DH}_3 \\ & & \mathbf{DH}_3\mathbf{DH}_3\mathbf{DH}_3 \\ & & \mathbf{DH}_3$	
			CH ₃ CH ₃	
		_		
		(i)	Draw the structural formula of the monomer of polymer A .	
		(ii)	Identify the functional group circled in polymer B .	[2]
		(11)	identity the fulletional group elicied in polymer b .	F41

(iii) Deduce the **two** types of organic compound which have reacted to form polymer **B**.

as	В	and	Α	Classify	polymers.	condensation	n addition polymers.			(d)
	••••						 	 	 	
[3]							 	 	 	
12]	al:	[Tota								

5	(a)	A co	ompound, X , contains 55.85% carbon, 6.97% hydrogen and 37.18% oxygen.	
		(i)	How does this prove that compound X contains only carbon, hydrogen and oxygen?	[1]
		(ii)	Use the above percentages to calculate the empirical formula of compound X .	[.]
				[2]
	((iii)	The M_r of X is 86.	
			What is its molecular formula?	
				[2]
	(b)	(i)	Bromine water changes from brown to colorless when added to X .	
			What does this tell you about the structure of X ?	[1]
		(ii)	Magnesium powder reacts with an aqueous solution of X . Hydrogen is evolved.	
			What does this tell you about the structure of X ?	[1]
	((iii)	X contains two different functional groups.	- 1
			Draw a structural formula of X .	

[1]

[Total: 8]

Carbon and silicon are elements in Group IV. They both form oxides of the type XO₂.

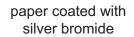
(a)	Silio	con(IV) oxide, SiO ₂ , has a macromolecular structure.
	(i)	Describe the structure of silicon(IV) oxide.
		[3]
	(ii)	State three properties which silicon(IV) oxide and diamond have in common.
		[3]
	(iii)	How could you show that silicon(IV) oxide is acidic and not basic or amphoteric?
	,	
		[2]
		[2]
(b)		plain why the physical properties of carbon dioxide are different from those of diamond and $con(\mathrm{IV})$ oxide.
		[1]
		[Total: 91

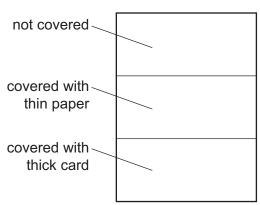
7 The rate of a photochemical reaction is affected by light.

										_	
(a)	The decomp	nosition of	silver l	hromide	is the	hasis	of film	nhotography	√ This is a	redox	reaction
141	THE GEOGING			DIOIIIIGO	10 1110	Daoio	01 111111	priotograpity			1 Cacilo

$$2AgBr \rightarrow 2Ag + Br_2$$
 cream black

step 1
$$2Br^- \rightarrow Br_2 + 2e^-$$


step 2 Ag
$$^+$$
 + e $^ \rightarrow$ Ag


(i)	Which step	is reduction?	Explain ¹	your answer.
-----	------------	---------------	----------------------	--------------

I	۲4:	1
	LI.	J

(ii) Which ion is the oxidizing agent? Explain your answer.

(b) A piece of white paper was coated with silver bromide and exposed to the light. Sections of the paper were covered as shown in the diagram.

Predict the appearance of the different sections of the paper after exposure to the light and the
removal of the card. Explain your predictions.

			Γ.4

(c)	carl	otosynthesis is another example of a photochemical reaction. Green plants can make simple bohydrates, such as glucose. These can polymerize to make more complex carbohydrates, th as starch.
	(i)	Write a word equation for photosynthesis.
		[2]
	(ii)	Name the substance which is responsible for the color in green plants and is essential for photosynthesis.
		[1]
	(iii)	The structural formula of glucose can be represented by H—O——O—H .
		Draw part of the structural formula of starch which contains two glucose units.
		[2]
	(iv)	Living organisms need carbohydrates for respiration.
		What is meant by respiration?
		[1]
		[Total: 12]

© UCLES 2015 0439/31/O/N/15

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											=	<u>N</u>	>	IN	IIA	0
							1 Hydrogen										4 He lium 2
Lithium 3 23 23 Na Sodium 11	Be Berylium 4 24 Mg Magnesium 12					-						11 B Boron 5 27 A1 Aluminum	Carbon 6 Carbon 8 Silicon 14	Nitrogen 7 311 P Phosphorus 15	16 Oxygen 8 32 Suffur 16	19 Fluorine 9 35.5 C1 Chlorine	Neon 10 Argon 18 Argon 18
39 K	40 Ca Caldium 20	Scandium 21	48 T Titanium	51 V Vanadium 23	Cr Chromium	Manganese 25	56 Fe Iron	59 Co Cobalt	59 N ickel	64 Copper	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium	As Arsenic	Selenium 34	l	84 Kr ypton 36
Rubidium 37	Sr Strontium	89 ×	2r Zr Zirconium 40	93 Nb Niobium 41	96 Moybdenum 42	Tc Technetium 43	Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Siiver 47	Cadmium 48	115 In Indium 49	119 Sn Tin				131 Xe Xenon 54
133 CS Cesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury	204 T 1 Thallium	207 Pb Lead 82	209 Bi Bismuth	Po Poknium 84	At Astatine	Rn Radon 86
Francium 87	226 Ra Radium	227 Act Actinium 89															
*58-711 190-103	*58-71 Lanthanoid series	d series series		140 Ce Cerium	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	∞ ×	a = relative atomic mass X = atomic symbol b = proton (atomic) number		232 Th Thorium	Pa Protactinium 91	238 U Uranium	Neptunium			Curium 96	BK Berkelium 97		ES Einsteinium 99	Fermium 100	Md Mendelevium 101		Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.