

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTER NUMBER		CANDIDATE NUMBER	
CHEMISTRY (U	JS)		0439/31
Paper 3 Theory	(Core)	Oc	tober/November 2018
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Center number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) The electronic structures of five atoms, A, B, C, D and E, are shown.

A B C D E

Answer the following questions about these structures. Each structure may be used once, more than once or not at all. State which structure, **A**, **B**, **C**, **D** or **E**, represents:

(i)	an atom of a metallic element	[1]
(ii)	an atom with a proton number of 13	[1]
(iii)	an atom of phosphorus	[1]
(iv)	an atom with only two shells of electrons	[1]
(v)	an atom which forms a stable ion with a single negative charge.	[1]

(b) Complete the table to show the number of electrons, neutrons and protons in the carbon atom and potassium ion shown.

	number of electrons	number of neutrons	number of protons
¹⁴ ₆ C	6		
⁴⁰ K ⁺		21	

[3]

[Total: 8]

2 (a) The table shows the ions present in a 1000 cm³ sample of blood plasma.

ion present	formula of ion	mass present in the 1000 cm ³ sample/g		
sodium	Na⁺	3.25		
potassium	K ⁺	0.16		
calcium	Ca ²⁺	0.10		
magnesium	Mg ²⁺	0.04		
chloride	Cl-	3.65		
hydrogencarbonate	HCO ₃ -	1.50		
phosphate	PO ₄ ³⁻	0.64		
sulfate	SO ₄ ²⁻	0.10		

Answer these questions using only information from the table.

	(i)	Which positive ion is present in the lowest concentration?
		[1
	(ii)	Give the name of the compound formed from K^+ and Cl^- ions.
		[1
((iii)	Calculate the mass of potassium ions present in 200 cm³ of this blood plasma.
		mass of potassium ions = g [1
((iv)	When the 1000 cm ³ sample of blood plasma is crystallized, several compounds are formed
		Suggest the name of the compound which forms the greatest mass of crystals.
		[1
(b)	Do	pariha a taat far natagajum jana
(D)	Des	scribe a test for potassium ions.
	test	
	res	ult
		[2

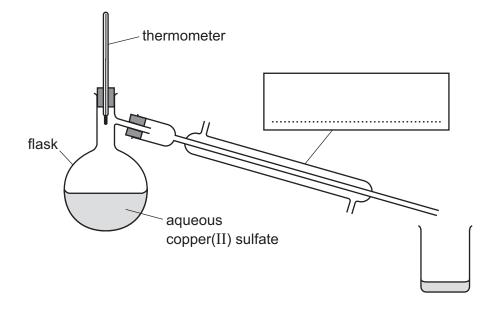
(c) Blood plasma also contains proteins. Proteins are present in food.

Which **one** of the following substances is also present in food? Draw a circle around the correct answer.

carbohydrate hematite poly(ethene) terylene [1]

(d) Compound S is one of the monomer units used to make proteins. Its structure is shown.

compound S


(i) On the structure, draw a circle around the alcohol functional group. [1]

(ii) Deduce the molecular formula of compound **S** showing the number of carbon, hydrogen, oxygen and nitrogen atoms.

.....[1]

[Total: 9]

3 (a) The apparatus used for distillation is shown.

()						
(i)	Complete the box to name the apparatus.					

(ii)	Describe and explain how the water is separated from the aqueous copper(II) sulfate be distillation.	Ŋ
		•
	_	_

(b) A sample of solid hydrated copper(II) sulfate is heated gently in a test-tube.

$$CuSO_4.5H_2O \rightleftharpoons CuSO_4 + 5H_2O$$

hydrated
copper(II) sulfate

Solid hydrated copper(II) sulfate is blue.

Describe two observations when the sample of solid hydrated copper(II) sulfate is heated gently in a test-tube.

1	
2	
	[2]

(c)		oper(II) sulfate can be prepared by heating an excess of copper(II) oxide with d furic acid.	ilute
	(i)	Complete the chemical equation for this reaction.	
		$CuO + H_2SO_4 \rightarrow CuSO_4 + \dots$	[1]
	(ii)	What method is used to separate the excess copper(II) oxide from the solution?	
			. [1]
(d)	Cop	oper(II) oxide can be reduced by hydrogen.	
		$CuO + H_2 \rightarrow Cu + H_2O$	
	Hov	w does this equation show that copper(II) oxide is reduced?	

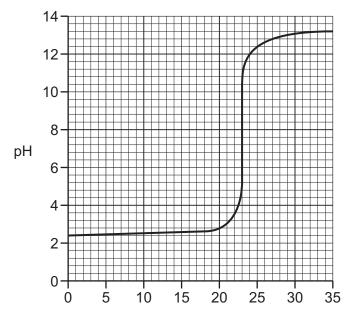
(e) The chemical equation for the reaction of copper with concentrated nitric acid is shown.

$$\mathrm{Cu} \ + \ 4\mathrm{HNO_3} \ \rightarrow \ \mathrm{Cu(NO_3)_2} \ + \ 2\mathrm{NO_2} \ + \ 2\mathrm{H_2O}$$

Complete the word equation for this reaction.

[2]

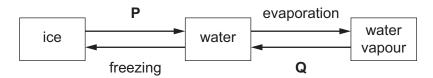
[Total: 11]


4	(a)	The s	structure	of	citraconic	acid	is	shown.
_	14/	11100	ti aotai c	\circ	OILI GOOTIIO	aoia		OIIO VVIII.

	Citr	aconic aci	d is an unsat	urated compou	nd.			
	(i)	What fea	ture of the str	ructure of citrac	onic acid show	s that it is unsatura	ted?	
								[1]
	(ii)	Describe	a test for an	unsaturated co	mpound.			
		test						
		result						[2]
(b)	Eth	anoic acid	has a carbo	xylic acid function	onal group.			
	Dra bon		cture of the c	arboxylic acid f	unctional group	o. Show all of the at	oms and all of	the
								[1]
(c)	Cor	mplete the	definition of	a homologous :	series using wo	ords from the list.		
С	hem	ical c	ompounds	elements	functional	hydrocarbons	physical	
	A h	omologou	s series is a	family of simila	r	with similar		

[3]

properties due to the presence of the same group.


(d) The graph shows how the pH of a dilute acid in an Erlenmeyer flask changes as aqueous sodium hydroxide is added to it.

volume of aqueous sodium hydroxide added/cm3

(i) Describe how the pH changes as the aqueous sodium hydroxide is added.
[2
(ii) What is the pH of the dilute acid before the aqueous sodium hydroxide is added?
[1
iii) What volume of aqueous sodium hydroxide has been added when the pH reaches pH7?
[1
[Total: 11

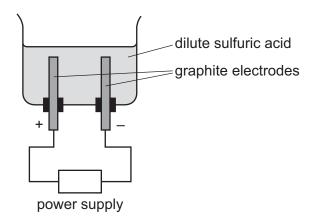
5 (a) Some of the changes of state of water are shown.

(i)	Give the names	of the changes	of state represent	ed by P and Q .
-----	----------------	----------------	--------------------	-------------------------------

- (ii) Use the kinetic particle model to describe the separation **and** motion of the particles in water when it is:
 - a liquid

a vapor

[4]


- **(b)** When lithium reacts with water, hydrogen is produced and the solution formed is alkaline.
 - (i) Balance the chemical equation for this reaction.

....Li +
$$H_2O \rightarrow 2LiOH + H_2$$
 [2]

(ii) Give the name of the product which causes the solution to be alkaline.

.....[1]

(c) Dilute sulfuric acid can be electrolyzed using the apparatus shown.

(i)	State the products of this electrolysis at:	
	the positive electrode (anode)	
	the negative electrode (cathode).	
(ii)	What observation is made at the electrodes?	[2]
		[1]
(iii)	Suggest one reason why graphite is used for the electrodes rather than magnesium.	
		[1]
	[Total:	13]

(a) The diagrams show the structures of four substances, R, S, T and U. S Т U R Br Zn Zn Zn Zn Zn Zn Na Br-Br Zn Which **two** of these substances, **R**, **S**, **T** or **U**, are covalently bonded? Which **two** of these substances, **R**, **S**, **T** or **U**, conduct electricity when solid?

(iii) Which substance, **R**, **S**, **T** or **U**, has the lowest melting point? [1]

(b) Phosphorus burns in oxygen to form $\mathsf{phosphorus}(V)$ oxide.

(i) Balance the chemical equation for this reaction.

$$P_4 + 5O_2 \rightarrowP_2O_5$$
 [1]

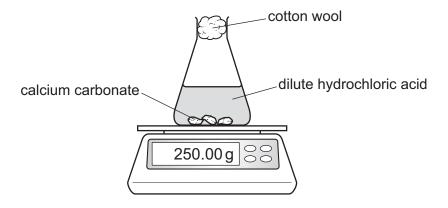
(ii) Is phosphorus(V) oxide an acidic oxide or a basic oxide? Give a reason for your answer.

......[1]

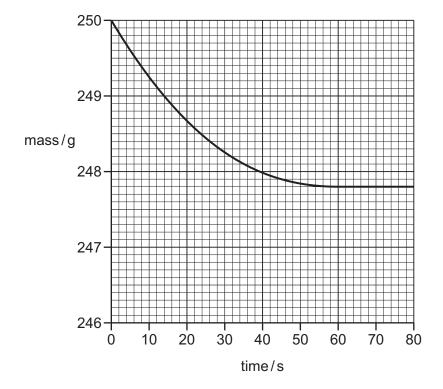
(c) Phosphate ions are present in many fertilizers.

(i) Which **one** of the following ions is also present in many fertilizers? Draw a circle around the correct answer.

 Ba^{2+} Cu^{2+} F^{-} NO_{3}^{-} [1]


(ii) Why do farmers put fertilizers on their fields?

[Total: 10]


7 (a) A student investigates the reaction of calcium carbonate with dilute hydrochloric acid.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

The student measures the mass of the reaction mixture at 10 second intervals using the apparatus shown.

The graph shows the results when 5.0 g of calcium carbonate is added to an **excess** of dilute hydrochloric acid.

Suggest why the reaction mixture decreases in mass as the reaction process.	ceeds.
---	--------

.....[1]

(ii) Calculate the loss of mass in grams when the reaction is complete.

loss in mass = g [1]

(iii) The experiment is repeated using dilute hydrochloric acid of **twice** the concentration. All other conditions are kept the same.

On the grid, draw a graph to show how the mass changes with time using dilute hydrochloric acid of twice the concentration. [2]

(iv) The original experiment is repeated at three different temperatures. All other conditions are kept the same.

The three temperatures are 20 °C, 30 °C and 40 °C.

Complete the table by writing the temperatures in the first column.

temperature in °C	initial rate of reaction in g/s
	0.16
	0.64
	0.32

[1]

(b) Complete the sentences about the use of calcium carbonate in the extraction of iron using words from the list.

ba	uxite	dioxide	hematite	monox	ide s	ilicon	slag	
The mai	n ore of	iron is calle	ed		. The ma	in impurit	y in the iron	ore is
silicon(IV	/) oxide.							
Calcium	carbona	te added t	o the blast	furnace	decompo	ses to fo	orm calcium	oxide
and carl	on		The cal	cium oxid	e reacts	with the	silicon(IV) ox	ide to
form								[3]

[Total: 8]

Glass can be made by heating a mixture of sand, sodium carbonate and limestone

(a) (i)	Calculate the relative formula mass of sodium carbonate, Na ₂ CO ₃ .
	Show all your working. Use your Periodic Table to help you.
	relative formula mass = [2]
(ii)	Sodium carbonate can be manufactured by the reaction between limestone and sodium chloride. The reaction is endothermic.
	What is meant by the term endothermic?
	[1]
	During this glass-making process, limestone decomposes into lime (calcium oxide).
(iii)	Lime is used to treat acidic soils.
(iii)	
(iii)	Lime is used to treat acidic soils. What type of chemical reaction occurs when lime reacts with acidic soils?

(b)		arcoal (carbon) can be burned in an excess of clean, dry air to provide the heat need lke glass.	ed to
	(i)	Which gas is 21% of clean, dry air?	
	(ii)	Write a word equation for carbon burning in an excess of air.	
((iii)	Complete the energy level diagram for this reaction by adding these two words: • reactants • product	. [1]
		energy	
		progress of reaction	[4]
(c)	Ara	gon is also present in clean, dry air.	[1]
(-)	(i)	Give one use of argon.	
			[1]
	(ii)	Which two of the following statements about argon are correct? Tick two boxes.	
		Argon is unreactive.	
		Argon is diatomic.	
		Argon is monatomic.	
		Argon forms ionic compounds.	
		Argon is a greenhouse gas.	[2]
		lTota	رے _ا [2] ا

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	2 -	e L	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon					
	II				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	н	iodine 127	85	Ą	astatine					
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium –	116	_	livermorium -		
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209					
	≥				9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium –		
	=				2	Ф	boron 11	13	Αl	aluminum 27	31	Ga	gallium 70	49	In	indium 115	84	11	thallium 204					
											30	Zn	zinc 65	48	g	cadmium 112	80	뤈	mercury 201	112	S	copernicium -		
											59	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -		
Group											28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -		
قَ														27	ပိ	cobalt 59	45	格	rhodium 103	77	ı	iridium 192	109	Μ̈́
			Г	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Ŧ	hassium		
											25	Mn	manganese 55	43	ည	technetium -	75	Re						
					_	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -		
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium -		
						atc	re				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	፟፟ፚ	rutherfordium -		
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids			
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium -		
	_				က	=	lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	cesium 133	87	ᇁ	francium		

71	n	Intetium	175	103	۲	lawrencium	ı
02		-				_	
69 F	E	thulium	169	101	Md	mendelevium	ı
89 L	П	erbinm	167	100	Fm	ferminm	I
29	0 I	holmium	165	66	Es	einsteinium	ı
99	Ś	dysprosium	163	86	ర	californium	ı
99 F	Ω	terbium	159	97	Æ	berkelium	1
64	D D	gadolinium	157	96	Cm	curium	1
63	EU	europium	152	92	Am	americium	ı
62	E N	samarium	150	94	Pn	plutonium	1
19 6	Ę	promethium	I	93	ď	neptunium	ı
09	DZ	neodymium	144	92	\supset	uranium	238
59	ĭ	praseodymium	141	91	Ра	protactinium	231
288	و د	cerium	140	06	드	thorium	232
25	В	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).