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1 Write down the fifth roots of unity. Hence, or otherwise, find all the roots of the equation

�5 = −16 + (16
√

3)i,
giving each root in the form reiθ . [4]

2 The sequence u
1
, u

2
, u

3
, . . . is such that u

1
= 1 and

un+1 = −1 + √(un + 7).
(i) Prove by induction that un < 2 for all n ≥ 1. [4]

(ii) Show that if u
n
= 2 − ε, where ε is small, then

un+1 ≈ 2 − 1
6
ε. [2]

3 The curve C has equation

y = x2

x + λ
,

where λ is a non-zero constant. Obtain the equations of the asymptotes of C. [3]

In separate diagrams, sketch C for the cases where

(i) λ > 0,

(ii) λ < 0.
[4]

4 Solve the differential equation

d2y

dx2
+ 3

dy
dx

+ 2y = 24e2x,

given that y = 1 and
dy
dx

= 9 when x = 0. [7]

5 In the equation

x3 + ax2 + bx + c = 0,

the coefficients a, b and c are real. It is given that all the roots are real and greater than 1.

(i) Prove that a < −3. [1]

(ii) By considering the sum of the squares of the roots, prove that a2 > 2b + 3. [2]

(iii) By considering the sum of the cubes of the roots, prove that a3 < −9b − 3c − 3. [4]
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6 Let

In = � 1

0
(1 + x2)−n dx,

where n ≥ 1. By considering
d
dx
(x(1 + x2)−n), or otherwise, prove that

2nIn+1 = (2n − 1)In + 2−n. [5]

Deduce that I3 = 3
32

π + 1
4
. [3]

7 Write down an expression in terms of � and N for the sum of the series

N

∑
n=1

2−n�n. [2]

Use de Moivre’s theorem to deduce that

10

∑
n=1

2−n sin( 1
10

nπ) = 1025 sin( 1
10

π)
2560 − 2048 cos( 1

10
π) . [6]

8 Find the coordinates of the centroid of the finite region bounded by the x-axis and the curve whose
equation is

y = x2(1 − x). [7]
Deduce the coordinates of the centroid of the finite region bounded by the x-axis and the curve whose
equation is

y = x(1 − x)2. [2]

9 The planes Π1 and Π2 have vector equations

r = λ1(i + j − k) + µ1(2i − j + k) and r = λ2(i + 2j + k) + µ2(3i + j − k)
respectively. The line l passes through the point with position vector 4i + 5j + 6k and is parallel to
both Π1 and Π2. Find a vector equation for l. [6]

Find also the shortest distance between l and the line of intersection of Π1 and Π2. [4]
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10 It is given that the eigenvalues of the matrix M, where

M = ( 4 1 −1−4 −1 4
0 −1 5

) ,

are 1, 3, 4. Find a set of corresponding eigenvectors. [4]

Write down a matrix P and a diagonal matrix D such that

Mn = PDP−1,

where n is a positive integer. [2]

Find P−1 and deduce that

lim
n→∞ 4−nMn = ⎛⎜⎜⎜⎝

−1
3

0 −1
3

4
3

0 4
3

4
3

0 4
3

⎞⎟⎟⎟⎠ . [5]

11 Find the rank of the matrix A, where

A = ⎛⎜⎜⎝
1 1 2 3
4 3 5 16
6 6 13 13

14 12 23 45

⎞⎟⎟⎠ . [3]

Find vectors x0 and e such that any solution of the equation

Ax = ⎛⎜⎜⎝
0
2−1
3

⎞⎟⎟⎠ (*)

can be expressed in the form x0 + λe, where λ ∈ 	. [5]

Hence show that there is no vector which satisfies (*) and has all its elements positive. [3]
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12 Answer only one of the following two alternatives.

EITHER

Show that (n + 1
2
)3 − (n − 1

2
)3 ≡ 3n2 + 1

4
. [1]

Use this result to prove that
N

∑
n=1

n2 = 1
6
N(N + 1)(2N + 1). [2]

The sums S, T and U are defined as follows:

S = 12 + 22 + 32 + 42 + . . . + (2N)2 + (2N + 1)2,

T = 12 + 32 + 52 + 72 + . . . + (2N − 1)2 + (2N + 1)2,

U = 12 − 22 + 32 − 42 + . . . − (2N)2 + (2N + 1)2.

Find and simplify expressions in terms of N for each of S, T and U. [5]

Hence

(i) describe the behaviour of
S
T

as N → ∞, [1]

(ii) prove that if
S
U

is an integer then
T
U

is an integer. [3]

OR

The curves C1 and C2 have polar equations

r = 4 cos θ and r = 1 + cos θ

respectively, where −1
2
π ≤ θ ≤ 1

2
π.

(i) Show that C1 and C2 meet at the points A (4
3
, α) and B (4

3
, −α), where α is the acute angle such

that cos α = 1
3
. [2]

(ii) In a single diagram, draw sketch graphs of C1 and C2. [3]

(iii) Show that the area of the region bounded by the arcs OA and OB of C1, and the arc AB of C2, is

4π − 1
3

√
2 − 13

2
α. [7]
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