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1 Given that a is a positive constant, solve the inequality

|x − 3a| > |x − a| . [4]

2

Two variable quantities x and y are related by the equation y = Axn, where A and n are constants.
The diagram shows the result of plotting ln y against ln x for four pairs of values of x and y. Use the
diagram to estimate the values of A and n. [5]

3 The equation of a curve is y = x + cos 2x. Find the x-coordinates of the stationary points of the curve
for which 0 ≤ x ≤ π, and determine the nature of each of these stationary points. [7]

4 The equation x3 − x − 3 = 0 has one real root, α.

(i) Show that α lies between 1 and 2. [2]

Two iterative formulae derived from this equation are as follows:

xn+1 = x3
n − 3, (A)

xn+1 = (xn + 3)1
3 . (B)

Each formula is used with initial value x1 = 1.5.

(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other
formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal
places. [5]

5 By expressing 8 sin θ − 6 cos θ in the form R sin(θ − α), solve the equation

8 sin θ − 6 cos θ = 7,

for 0◦ ≤ θ ≤ 360◦. [7]
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6 (i) Use the substitution x = sin2 θ to show that

� √( x
1 − x

) dx = 
 2 sin2 θ dθ. [4]

(ii) Hence find the exact value of

�
1
4

0

√( x
1 − x

) dx. [4]

7 The equation 2x3 + x2 + 25 = 0 has one real root and two complex roots.

(i) Verify that 1 + 2i is one of the complex roots. [3]

(ii) Write down the other complex root of the equation. [1]

(iii) Sketch an Argand diagram showing the point representing the complex number 1 + 2i. Show on
the same diagram the set of points representing the complex numbers � which satisfy

|�| = |� − 1 − 2i| . [4]

8 In a certain chemical reaction the amount, x grams, of a substance present is decreasing. The rate of
decrease of x is proportional to the product of x and the time, t seconds, since the start of the reaction.
Thus x and t satisfy the differential equation

dx
dt

= −kxt,

where k is a positive constant. At the start of the reaction, when t = 0, x = 100.

(i) Solve this differential equation, obtaining a relation between x, k and t. [5]

(ii) 20 seconds after the start of the reaction the amount of substance present is 90 grams. Find the
time after the start of the reaction at which the amount of substance present is 50 grams. [3]

9 (i) Express
3x2 + x(x + 2)(x2 + 1) in partial fractions. [5]

(ii) Hence obtain the expansion of
3x2 + x(x + 2)(x2 + 1) in ascending powers of x, up to and including the

term in x3. [5]

10 The straight line l passes through the points A and B with position vectors

2i + 2j + k and i + 4j + 2k

respectively. This line intersects the plane p with equation x − 2y + 2� = 6 at the point C.

(i) Find the position vector of C. [4]

(ii) Find the acute angle between l and p. [4]

(iii) Show that the perpendicular distance from A to p is equal to 2. [3]
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