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1 Solve the inequality |2x − 1| > |x|. [4]

2 (i) Express 4x in terms of y, where y = 2x. [1]

(ii) Hence find the values of x that satisfy the equation

3(4x) − 10(2x) + 3 = 0,

giving your answers correct to 2 decimal places. [5]

3 The polynomial 4x3 − 7x + a, where a is a constant, is denoted by p(x). It is given that (2x − 3) is a
factor of p(x).

(i) Show that a = −3. [2]

(ii) Hence, or otherwise, solve the equation p(x) = 0. [4]

4 (i) Prove the identity

tan(x + 45◦) − tan(45◦ − x) ≡ 2 tan 2x. [4]
(ii) Hence solve the equation

tan(x + 45◦) − tan(45◦ − x) = 2,

for 0◦ ≤ x ≤ 180◦. [3]

5

The diagram shows a chord joining two points, A and B, on the circumference of a circle with centre O
and radius r. The angle AOB is α radians, where 0 < α < π. The area of the shaded segment is
one sixth of the area of the circle.

(i) Show that α satisfies the equation

x = 1
3
π + sin x. [3]

(ii) Verify by calculation that α lies between 1
2
π and 2

3
π. [2]

(iii) Use the iterative formula

x
n+1

= 1
3
π + sin x

n
,

with initial value x1 = 2, to determine α correct to 2 decimal places. Give the result of each
iteration to 4 decimal places. [3]
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The diagram shows the part of the curve y = e2x

x
for x > 0, and its minimum point M.

(i) Find the coordinates of M. [5]

(ii) Use the trapezium rule with 2 intervals to estimate the value of

� 2

1

e2x

x
dx,

giving your answer correct to 1 decimal place. [3]

(iii) State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of
the true value of the integral in part (ii). [1]

7 (i) Given that y = tan 2x, find
dy
dx

. [2]

(ii) Hence, or otherwise, show that

� 1
6
π

0
sec2 2x dx = 1

2

√
3,

and, by using an appropriate trigonometrical identity, find the exact value of � 1
6
π

0
tan2 2x dx. [6]

(iii) Use the identity cos 4x ≡ 2 cos2 2x − 1 to find the exact value of

�
1
6
π

0

1
1 + cos 4x

dx. [2]
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