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1 A curve is defined parametrically by

x = at2, y = at,

where a is a positive constant. The part of the curve joining the point where t = 0 to the point where
t = √

2 is rotated through one complete revolution about the x-axis. Show that the area of the surface
obtained is 13

3
πa2. [4]

2 Express

2n + 3
n(n + 1)

in partial fractions and hence use the method of differences to find

N

∑
n=1

2n + 3
n(n + 1)(1

3
)n+1

in terms of N. [4]

Deduce the value of ∞
∑
n=1

2n + 3
n(n + 1)(1

3
)n+1

. [1]

3 Prove by induction that, for all n ≥ 1,

dn

dxn (ex2) = Pn(x)ex2
,

where Pn(x) is a polynomial in x of degree n with the coefficient of xn equal to 2n. [6]

4 The roots of the equation

x3 − 8x2 + 5 = 0

are α, β , γ . Show that

α2 = 5
β + γ

. [4]

It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative
and the other two roots are positive. [3]

5 The positive variables x and y are related by

y = x2 + 2 ln(xy).
Find the values of

dy
dx

and
d2y

dx2
when both x and y are equal to 1. [7]
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6 The points A, B and C have position vectors 2i, 3j and 4k respectively. Find a vector which is
perpendicular to the plane Π

1
containing A, B and C. [3]

The plane Π2 has equation

r = i + 4j + 2k + λ (i − j) + µ(j − k).
Find the acute angle between the planes Π1 and Π2. [5]

7 The curve C has polar equation

r = θ sin θ ,

where 0 ≤ θ ≤ π. Draw a sketch of C. [2]

Find the area of the region enclosed by C, leaving your answer in terms of π. [7]

8 Let I
n
= � ln 2

0
(ex + e−x)n dx.

(i) Show that

d
dx
[(ex − e−x)(ex + e−x)n−1] = n(ex + e−x)n − 4(n − 1)(ex + e−x)n−2

. [3]

(ii) Hence show that

nIn = 4(n − 1)In−2 + 3
2
(5

2
)n−1

. [2]
(iii) Use the result in part (ii) to find the y-coordinate of the centroid of the region bounded by the

axes, the line x = ln 2 and the curve

y = (ex + e−x)2
.

Give your answer correct to 3 decimal places. [5]

9 Write down, in any form, all the roots of the equation �5 − 1 = 0. [2]

Hence find all the roots of the equation

(w − 1)4 + (w − 1)3 + (w − 1)2 + w = 0,

and deduce that none of them is real. [4]

Find the arguments of the two roots which have the smaller modulus. [4]
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10 The vectors b
1
, b

2
, b

3
, b

4
are defined as follows:

b1 = ⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , b2 = ⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠ , b3 = ⎛⎜⎜⎝
1
1
1
0

⎞⎟⎟⎠ , b4 = ⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ .

The linear space spanned by b1, b2, b3 is denoted by V1 and the linear space spanned by b1, b2, b4 is
denoted by V2.

(i) Give a reason why V1 ∪ V2 is not a linear space. [1]

(ii) State the dimension of the linear space V1 ∩ V2 and write down a basis. [2]

Consider now the set V3 of all vectors of the form qb2 + rb3 + sb4, where q, r, s are real numbers.
Show that V3 is a linear space, and show also that it has dimension 3. [3]

Determine whether each of the vectors

⎛⎜⎜⎝
4
4
2
5

⎞⎟⎟⎠ and
⎛⎜⎜⎝

5
4
2
5

⎞⎟⎟⎠
belongs to V3 and justify your conclusions. [4]

11 Find the eigenvalues of the matrix

A = (−1 1 4
1 1 −1
2 1 1

)
and corresponding eigenvectors. [7]

The matrix B is defined by

B = A − kI,

where I is the 3 × 3 identity matrix and k is a real number. Find a non-singular matrix P and a diagonal
matrix D such that

B3 = PDP−1. [4]
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12 Answer only one of the following two alternatives.

EITHER

The curve C has equation

y = ax2 + bx + c
x + 4

,

where a, b and c are constants. It is given that y = 2x − 5 is an asymptote of C.

(i) Find the values of a and b. [3]

(ii) Given also that C has a turning point at x = −1, find the value of c. [3]

(iii) Find the set of values of y for which there are no points on C. [4]

(iv) Draw a sketch of the curve with equation

y = 2(x − 7)2 + 3(x − 7) − 2
x − 3

. [3]
[You should state the equations of the asymptotes and the coordinates of the turning points.]

OR

Show that the substitution y = 1
w

reduces the differential equation

y
d2y

dx2
+ 2y

dy
dx

− 2(dy
dx
)2 − 5y2 = (5x2 + 4x + 2)y3

to

d2w

dx2
+ 2

dw
dx

+ 5w = −5x2 − 4x − 2. [4]
Find the general solution for w in terms of x. [6]

Find a function f such that lim
x→∞( y

f(x)) = 1. [3]
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