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1 Find the exact value of the constant k for which � k

1

1
2x − 1

dx = 1. [4]

2 The polynomial x4 + 3x2 + a, where a is a constant, is denoted by p(x). It is given that x2 + x + 2 is a
factor of p(x). Find the value of a and the other quadratic factor of p(x). [4]

3 Use integration by parts to show that

� 4

2
ln x dx = 6 ln 2 − 2. [4]

4 The curve with equation y = e−x sin x has one stationary point for which 0 ≤ x ≤ π.

(i) Find the x-coordinate of this point. [4]

(ii) Determine whether this point is a maximum or a minimum point. [2]

5 (i) Show that the equation

tan(45◦ + x) − tan x = 2

can be written in the form

tan2 x + 2 tan x − 1 = 0. [3]
(ii) Hence solve the equation

tan(45◦ + x) − tan x = 2,

giving all solutions in the interval 0◦ ≤ x ≤ 180◦. [4]

6 (i) By sketching a suitable pair of graphs, show that the equation

2 − x = ln x

has only one root. [2]

(ii) Verify by calculation that this root lies between 1.4 and 1.7. [2]

(iii) Show that this root also satisfies the equation

x = 1
3
(4 + x − 2 ln x). [1]

(iv) Use the iterative formula

xn+1 = 1
3
(4 + xn − 2 ln xn),

with initial value x1 = 1.5, to determine this root correct to 2 decimal places. Give the result of
each iteration to 4 decimal places. [3]
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7 The number of insects in a population t days after the start of observations is denoted by N. The
variation in the number of insects is modelled by a differential equation of the form

dN
dt

= kN cos(0.02t),
where k is a constant and N is taken to be a continuous variable. It is given that N = 125 when t = 0.

(i) Solve the differential equation, obtaining a relation between N, k and t. [5]

(ii) Given also that N = 166 when t = 30, find the value of k. [2]

(iii) Obtain an expression for N in terms of t, and find the least value of N predicted by this model.
[3]

8 (a) The complex number � is given by � = 4 − 3i
1 − 2i

.

(i) Express � in the form x + iy, where x and y are real. [2]

(ii) Find the modulus and argument of �. [2]

(b) Find the two square roots of the complex number 5 − 12i, giving your answers in the form x + iy,
where x and y are real. [6]

9 (i) Express
2 − x + 8x2

(1 − x)(1 + 2x)(2 + x) in partial fractions. [5]

(ii) Hence obtain the expansion of
2 − x + 8x2

(1 − x)(1 + 2x)(2 + x) in ascending powers of x, up to and including

the term in x2. [5]

10 The straight line l has equation r = i + 6j − 3k + s(i − 2j + 2k). The plane p has equation(r − 3i).(2i − 3j + 6k) = 0. The line l intersects the plane p at the point A.

(i) Find the position vector of A. [3]

(ii) Find the acute angle between l and p. [4]

(iii) Find a vector equation for the line which lies in p, passes through A and is perpendicular to l.
[5]
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