

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

Origin Con

| ¥  |  |
|----|--|
| 0) |  |
| N  |  |
| 00 |  |
| N  |  |
| 0  |  |
| Н  |  |
| 00 |  |
| Н  |  |
| ω  |  |
| 4  |  |

| CANDIDATE<br>NAME |  |  |                  |  |  |
|-------------------|--|--|------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE NUMBER |  |  |

BIOLOGY 9700/04

Paper 4 Structured Questions A2 Core

October/November 2008

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces provided at the top of this page. Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

### Section A

Answer all questions.

### **Section B**

Answer **one** question.

Circle the number of the Section B question you have answered in the grid below.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |  |  |
|--------------------|--|--|--|
| 1                  |  |  |  |
| 2                  |  |  |  |
| 3                  |  |  |  |
| 4                  |  |  |  |
| 5                  |  |  |  |
| 6                  |  |  |  |
| 7                  |  |  |  |
| 8                  |  |  |  |
| 9                  |  |  |  |
| Section B          |  |  |  |
| 10 or 11           |  |  |  |
| Total              |  |  |  |
|                    |  |  |  |

This document consists of 20 printed pages, 2 lined pages and 2 blank pages.



### **Section A**

# Answer all the questions.

1 The African hunting dog, *Lycaon pictus*, is a carnivore which hunts in packs in areas of East Africa.

Fig. 1.1 shows an African hunting dog.



Fig. 1.1

| (a) | prokaryotic.                                                                                 |
|-----|----------------------------------------------------------------------------------------------|
|     | Describe the differences between eukaryotic and prokaryotic cells with respect to their DNA. |
|     |                                                                                              |

.....[2

|     | 42                                                                                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | In some parts of East Africa <i>L. pictus</i> is becoming an endangered species.  Suggest reasons why <i>L. pictus</i> is becoming an endangered species. |
| (b) | In some parts of East Africa <i>L. pictus</i> is becoming an endangered species.                                                                          |
|     | Suggest reasons why <i>L. pictus</i> is becoming an endangered species.                                                                                   |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     | [3]                                                                                                                                                       |
| (c) | One way of protecting <i>L. pictus</i> is to create conservation areas.                                                                                   |
|     | Describe two <b>other</b> methods of conserving endangered species such as <i>L. pictus</i> .                                                             |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     | [2]                                                                                                                                                       |
|     | [Total: 7]                                                                                                                                                |

MAN. P.

**2** Fig. 2.1 shows the CFTR (cystic fibrosis transmembrane conductance regulator) protegiasma (cell surface) membrane.



Fig. 2.1

| (a) | (1)  | Describe the normal function of the CFTR protein.                                                                       |
|-----|------|-------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      | [2]                                                                                                                     |
|     | (ii) | On Fig. 2.1, use the letter <b>E</b> to indicate the external face of the membrane. State how you identified this face. |
|     |      |                                                                                                                         |
|     |      | [1]                                                                                                                     |
| (b) | Cys  | tic fibrosis is caused by a recessive allele of the CFTR gene.                                                          |
|     | (i)  | Explain the meaning of the term recessive allele.                                                                       |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      | [2]                                                                                                                     |

|     | my                                                                                                                                                                                                                                                                                             |      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | 5                                                                                                                                                                                                                                                                                              |      |
|     | (ii) Explain how cystic fibrosis affects the function of the lungs.                                                                                                                                                                                                                            | 8    |
|     |                                                                                                                                                                                                                                                                                                | Tage |
|     |                                                                                                                                                                                                                                                                                                | CON  |
|     |                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                                                                                                                                                                                |      |
|     | [3]                                                                                                                                                                                                                                                                                            |      |
| (c) | As cystic fibrosis is caused by a recessive allele of a single gene, it is a good candidate for gene therapy. Trials were undertaken in the 1990s, attempting to deliver the normal allele of the <i>CFTR</i> gene into cells of the respiratory tract, using viruses or liposomes as vectors. |      |
|     | Explain how viruses deliver the allele into cells.                                                                                                                                                                                                                                             |      |
|     |                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                                                                                                                                                                                |      |
|     | [2]                                                                                                                                                                                                                                                                                            |      |

|      | onsense' (stop) codon within the gene.                                                                                                                                                                                                                                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)  | Explain how this mutation would prevent normal CFTR protein being produced.                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      | [2]                                                                                                                                                                                                                                                                                                                                              |
| (ii) | A new type of drug, PTC124, enables translation to continue through the nonsense codon. Trials in mice homozygous for a <i>CFTR</i> allele containing the nonsense codon have found that animals treated with PTC124 produce normal CFTR protein in their cells. The drug is taken orally, and is readily taken up into cells all over the body. |
|      | Using your knowledge of the progress towards successful gene therapy for cystic fibrosis, suggest why PTC124 could be a simpler and more reliable treatment for this disease.                                                                                                                                                                    |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                  |
|      | ្រា                                                                                                                                                                                                                                                                                                                                              |

[Total: 15]

7 BLANK PAGE

ambridge com

QUESTION 3 starts on page 8

- 3 Sorghum is a cereal crop that grows well in very dry (arid) conditions.
  - (a) Outline **two** structural features of sorghum that adapt it to survive in arid environments

| <br> | <br> |
|------|------|
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

.....[2

- **(b)** An investigation was carried out to measure the effect of lack of water on the leaves of sorghum plants.
  - Several well-watered sorghum plants were kept in conditions of normal light and temperature.
  - Watering was then stopped for 6 days, and resumed on day 7.
  - The water potential of the cells in the leaves, the concentrations of abscisic acid in the leaves and stomatal resistance were measured each day.

A high stomatal resistance indicates that most stomata are partially or completely closed.

The results are shown in Fig. 3.1.



With reference to Fig. 3.1,

|     | (i)  | describe <b>and</b> explain the changes in abscisic acid concentration over the 10 daperiod    |
|-----|------|------------------------------------------------------------------------------------------------|
|     |      |                                                                                                |
|     |      |                                                                                                |
|     |      |                                                                                                |
|     |      |                                                                                                |
|     |      | [3]                                                                                            |
|     | (ii) | explain the changes in stomatal resistance over this period.                                   |
|     |      |                                                                                                |
|     |      |                                                                                                |
|     |      | [2]                                                                                            |
| (c) |      | lain how the changes you have described in <b>(b)</b> help sorghum to survive in arid ditions. |
|     |      |                                                                                                |
|     |      |                                                                                                |
|     |      | [2]                                                                                            |
|     |      | [Total: 9]                                                                                     |

(a)

| Outline the hybridoma method for the production of a monoclonal antibody. | ocambr. |
|---------------------------------------------------------------------------|---------|
|                                                                           | ate con |

| `       |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
| [4]     |
| <br>[4] |

**(b)** Herceptin is a monoclonal antibody used in the treatment of some breast cancers. It binds strongly to molecules of a receptor protein, HER2, that is produced in abnormally large quantities in the plasma (cell surface) membranes of about 30% of human breast cancers.

Investigations have been made into the most effective way to use Herceptin to treat breast cancer.

One experiment investigated the ability of different treatments to induce cell death in breast cancer cells.

Herceptin and X-ray treatment were used both separately and together. The results are shown in Fig. 4.1.



Fig. 4.1

With reference to Fig. 4.1,

| (i)  | compare the effects on breast cancer cells of the different treatments                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |
|      | [3]                                                                                                                                                     |
| (ii) | calculate the percentage increase in the ability to induce cell death of using Herceptin <b>and</b> X-ray treatment compared with using Herceptin only. |
|      | Show your working.                                                                                                                                      |
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |
|      | וכו                                                                                                                                                     |
|      | [2]                                                                                                                                                     |

www.PapaCambridge.com (c) A second experiment investigated the effect of increasing doses of X-rays on the of breast cancer cells in the presence and absence of Herceptin. The results are shadely in Fig. 4.2.



Fig. 4.2

With reference to Fig. 4.2,

| (i)  | compare the effects of increasing doses of X-rays on cells in the presence and absence of Herceptin |
|------|-----------------------------------------------------------------------------------------------------|
|      |                                                                                                     |
|      |                                                                                                     |
|      |                                                                                                     |
|      |                                                                                                     |
|      | [3]                                                                                                 |
| (ii) | suggest an explanation for the effect of Herceptin.                                                 |
|      |                                                                                                     |
|      |                                                                                                     |
|      | [2]                                                                                                 |

[Total: 14]

- www.PapaCambridge.com (a) Complete Table 5.1 to show, for each of the two hormones, follicle stimulating ha 5 (FSH) and progesterone,
  - the site of secretion
  - the target tissue(s)
  - the action of the hormone during the human menstrual cycle.

Table 5.1

| hormone      | site of secretion | target tissue(s) | action during human menstrual cycle |
|--------------|-------------------|------------------|-------------------------------------|
|              |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
| FSH          |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
| progesterone |                   |                  |                                     |
| progesterone |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |
|              |                   |                  |                                     |

|     |            |                           |                       | [6]                      |
|-----|------------|---------------------------|-----------------------|--------------------------|
| (b) | Explain th | ne biological basis of th | ne oestrogen/progeste | rone contraceptive pill. |
|     |            |                           |                       |                          |
|     |            |                           |                       |                          |
|     |            |                           |                       |                          |
|     |            |                           |                       |                          |
|     |            |                           |                       | [3]                      |
|     |            |                           |                       | [Total: 9]               |

www.PapaCambridge.com



Fig. 6.1

| (a) | (i)  | Name the nitrogenous base labelled <b>B</b> .                                                                                 |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------|
|     |      | [1]                                                                                                                           |
|     | (ii) | Name the sugar labelled <b>S</b> .                                                                                            |
|     |      | [1]                                                                                                                           |
| (b) |      | is described as having a universal role as the energy currency in all living organisms. lain why it is described in this way. |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      |                                                                                                                               |
|     |      | [4]                                                                                                                           |

| (c) | State <b>precisely</b> two places where ATP is synthesised in cells. | acan      |        |
|-----|----------------------------------------------------------------------|-----------|--------|
|     | 1                                                                    |           | Strick |
|     |                                                                      |           | Se.Co. |
|     | 2                                                                    |           | 13     |
|     |                                                                      | [2]       |        |
|     | Г                                                                    | Total: 81 | L.     |

Fig. 7.1 shows a section through part of the cortex of a kidney.

7



Fig. 7.1

- (a) On Fig. 7.1, draw label lines and use the letters G and R to identify:
  - a glomerulus with the letter G.
  - a renal capsule with the letter R.

[2]

(b) State the name of the hormone that is involved in the control of the water potential of the blood.

Table 7.1

| • •      | shows the concentration sule and a collecting duct | •                         | the fluids of a glome.   |
|----------|----------------------------------------------------|---------------------------|--------------------------|
|          | Co                                                 | oncentration / g 100 cm   | <sub>1</sub> –3          |
| compound | blood plasma entering glomerulus                   | filtrate in renal capsule | urine in collecting duct |
| water    | 90                                                 | 90                        | 96                       |
| proteins | 8.0                                                | 0.0                       | 0.0                      |
| glucose  | 0.1                                                | 0.1                       | 0.0                      |
| urea     | 0.03                                               | 0.03                      | 2.0                      |

With reference to Table 7.1,

| (i)   | explain why proteins occur in the blood entering the glomerulus but not in the filtrate in the renal capsule |
|-------|--------------------------------------------------------------------------------------------------------------|
|       |                                                                                                              |
|       | [2]                                                                                                          |
| (ii)  | explain why there is glucose present in the filtrate but not in the urine                                    |
|       |                                                                                                              |
|       | [2]                                                                                                          |
| (iii) | explain the difference in the concentration of urea between the filtrate and urine.                          |
|       |                                                                                                              |
|       |                                                                                                              |
|       | [2]                                                                                                          |
|       | [Total: 01                                                                                                   |

www.PapaCambridge.com In mice there are several alleles of the gene that controls the intensity of pigmentation 8 fur.

The alleles are listed below in order of dominance with **C** as the most dominant.

= full colour **C**<sup>ch</sup> = chinchilla = himalayan Cp = platinum = albino

The gene for eye colour has two alleles. The allele for black eyes, B, is dominant, while the allele for red eyes, b, is recessive.

A mouse with full colour and black eyes was crossed with a himalayan mouse with black eyes. One of the offspring was albino with red eyes.

Using the symbols above, draw a genetic diagram to show the genotypes and phenotypes of the offspring of this cross.

**BLANK PAGE** 

QUESTION 9 starts on page 20

www.PapaCambridge.com

occurs in the Randhidae Conn

**9** In the majority of photosynthetic organisms, fixation of carbon dioxide occurs in the cycle.

Fig. 9.1 is an outline of this cycle.



Fig. 9.1

| (a) State. | (a) | State, |
|------------|-----|--------|
|------------|-----|--------|

| (i)   | the name of the five carbon sugar in the cycle                                                                              |      |
|-------|-----------------------------------------------------------------------------------------------------------------------------|------|
|       |                                                                                                                             | .[1] |
| (ii)  | the name of the enzyme that fixes carbon dioxide                                                                            | .[1] |
| (iii) | where in the chloroplast the Calvin cycle occurs                                                                            |      |
|       |                                                                                                                             | .[1] |
| (iv)  | the name of another compound that is produced in the light-dependent stage photosynthesis that is used in the Calvin cycle. | e of |
|       |                                                                                                                             | [1]  |

www.PapaCambridge.com (b) Fig. 9.2 shows the changes in the relative concentrations of RuBP and GP produthe Calvin cycle before and after a light source is switched off. All other conditions constant.



Fig. 9.2

| Explain the changes in the relative concentrations of RuBP and GP <b>after</b> the light source is switched off. |
|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| [4]                                                                                                              |
| · ·                                                                                                              |
|                                                                                                                  |

[Total: 8]

# www.PapaCambridge.com

# **Section B**

# Answer **one** question.

| 10    | (a)                 | Describe the structure of a motor neurone.                                   | [/]         |
|-------|---------------------|------------------------------------------------------------------------------|-------------|
|       | (b)                 | Explain how an action potential is transmitted along a motor neurone.        | [8]         |
|       |                     |                                                                              | [Total: 15] |
| 11    | <b>(</b> 0 <b>)</b> | Explain the role of igaleting mechanisms in the evalution of new appoint     | 101         |
| 11    |                     | Explain the role of isolating mechanisms in the evolution of new species.    | [8]         |
|       | (b)                 | Describe and explain, using an example, the process of artificial selection. | [7]         |
|       |                     |                                                                              | [Total: 15] |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
| ••••  |                     |                                                                              |             |
| ••••• |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
| ••••  |                     |                                                                              |             |
| ••••  |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |
|       |                     |                                                                              |             |

|      | 9             |
|------|---------------|
|      | and Cambridge |
| <br> | <br>SIT S     |
|      | Tide          |
| <br> | <br>a di      |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
|      | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |
|      | <br>          |
|      |               |
| <br> | <br>          |
| <br> | <br>          |
|      |               |
| <br> | <br>          |

| 24 MANN, DONAL COMPANIES C |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oride   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se. COM |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

Copyright Acknowledgements:

Question 1  $\textbf{Fig. 1} @ \underline{www.adenbartdreamteam.nl/Images/Mauritania/AnimalsMauritania001.bmp} \\$ 

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (LICLES), which is itself a department of the University of Cambridge