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1 Solve the equation

ln(5 − x) = ln 5 − ln x,

giving your answers correct to 3 significant figures. [4]

2 The equation x3 − 8x − 13 = 0 has one real root.

(i) Find the two consecutive integers between which this root lies. [2]

(ii) Use the iterative formula

x
n+1

= (8x
n
+ 13)1

3

to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal

places. [3]

3 The equation of a curve is x3 − x2y − y3 = 3.

(i) Find
dy

dx
in terms of x and y. [4]

(ii) Find the equation of the tangent to the curve at the point (2, 1), giving your answer in the form

ax + by + c = 0. [2]

4 The angles α and β lie in the interval 0◦ < x < 180◦, and are such that

tan α = 2 tan β and tan(α + β) = 3.

Find the possible values of α and β . [6]

5 The polynomial 2x3 + ax2 + bx − 4, where a and b are constants, is denoted by p(x). The result of

differentiating p(x) with respect to x is denoted by p′(x). It is given that (x + 2) is a factor of p(x) and

of p′(x).
(i) Find the values of a and b. [5]

(ii) When a and b have these values, factorise p(x) completely. [3]

6 (i) Use the substitution x = 2 tan θ to show that

ä 2

0

8(4 + x2)2
dx = ã 1

4
π

0

cos2 θ dθ . [4]

(ii) Hence find the exact value of

ä 2

0

8(4 + x2)2
dx. [4]
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7 The complex numbers −2 + i and 3 + i are denoted by u and v respectively.

(i) Find, in the form x + iy, the complex numbers

(a) u + v, [1]

(b)
u

v
, showing all your working. [3]

(ii) State the argument of
u

v
. [1]

In an Argand diagram with origin O, the points A, B and C represent the complex numbers u, v and

u + v respectively.

(iii) Prove that angle AOB = 3

4
π. [2]

(iv) State fully the geometrical relationship between the line segments OA and BC. [2]

8 (i) Express
1 + x(1 − x)(2 + x2) in partial fractions. [5]

(ii) Hence obtain the expansion of
1 + x(1 − x)(2 + x2) in ascending powers of x, up to and including the

term in x2. [5]

9 The temperature of a quantity of liquid at time t is θ . The liquid is cooling in an atmosphere whose

temperature is constant and equal to A. The rate of decrease of θ is proportional to the temperature

difference (θ − A). Thus θ and t satisfy the differential equation

dθ

dt
= −k(θ − A),

where k is a positive constant.

(i) Find, in any form, the solution of this differential equation, given that θ = 4A when t = 0. [5]

(ii) Given also that θ = 3A when t = 1, show that k = ln 3

2
. [1]

(iii) Find θ in terms of A when t = 2, expressing your answer in its simplest form. [3]

10 The plane p has equation 2x − 3y + 6ß = 16. The plane q is parallel to p and contains the point with

position vector i + 4j + 2k.

(i) Find the equation of q, giving your answer in the form ax + by + cß = d. [2]

(ii) Calculate the perpendicular distance between p and q. [3]

(iii) The line l is parallel to the plane p and also parallel to the plane with equation x − 2y + 2ß = 5.

Given that l passes through the origin, find a vector equation for l. [5]
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