www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9691 COMPUTING

9691/21

Paper 2 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award]. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

					34
Page		ige 2	2	Mark Scheme	Syllabus
				GCE AS/A LEVEL – October/November 2013	9691
1	(a)	- - - - -	wher simp smal easie chan can r in thi	er to understand the problem n dealing with smaller problems eler to debug Il parts at a time er to maintain eging small sections ere-use his modules is and future work	Syllabus 9691 PARCAMBATA
			compa 2 mai		[6]
	(b)	(i)	- 0	structure diagram/Jackson diagram/comparable orders sequence of modules/comparable	[2]
		(ii)	- t	top level 3 rd level in order	[2]
	(c)	- - -	funct	edures tions k structures	[max 2]
	(d)	- - -	to pa	g parameters ass information about a data item be by value or by reference	[max 2]
	(e)	- - - - - -	file n array file s array array array	y fixed size not fixed y data volatile aved y can be multi-dimensional y data can be added to a specific location y direct access equential access	[6]
	(f)	- - -	type loop	y declaration and size integer each element to sensible value (probably 0)	[4]
2	(a)	(i)		each condition not separate IF(Index > 100) OR(index < 0) THEN OUTPUT "Error	" [2]
		(ii)		arithmetic must be on RHS NumberOfCopies[Index] = NumberOfCopies[Index] +	1 [2]

[2]

(iii) – –

 $3 \times 2 \text{ marks}$

assigning value of wrong type NumberOfCopies[Index] = 3

Page 3 Mark Scheme Syllabus 1001

GCE AS/A LEVEL – October/November 2013 9691

TraceID < 1001

```
(b) IF ResourceID < 1001
        THEN
            OUTPUT "Cabinet 1"
        ELSE
            IF ResourceID <=3000
                THEN
                    OUTPUT "Cabinet 2"
                        IF ResourceID MOD 2 = 0
                            THEN
                                OUTPUT "Drawer 1"
                            ELSE
                                OUTPUT "Drawer 2"
                        ENDIF
                ELSE
                    IF ResourceID <=5000
                        THEN
                            OUTPUT "Cabinet 3"
                        ELSE
                            OUTPUT "Invalid ID"
                    ENDIF
            ENDIF
    ENDIF
            1<sup>st</sup> condition
            correct output including OUTPUT/PRINT or equivalent
            dealing with inner nesting of odd/even
            correct 2<sup>nd</sup> and 3<sup>rd</sup> conditions
            correctly nested
           indentation
(c) e.g. PASCAL
    var ResourceID: integer;
    begin
        readln(ResourceID);
        case ResourceID of
```

e.g. PASCAL
var ResourceID: integer;
begin

readIn(ResourceID);

case ResourceID of

1..1000: writeIn('Cabinet 1');

1001..3000: if ResourceID mod 2 = 0 then

writeIn('Cabinet 2, Drawer 1')

else

writeIn('Cabinet 2, Drawer 2');

3001..5000: writeIn('Cabinet 3');

else

writeIn('Invalid Resource ID');

end;

end.
CASE/SELECT header

correct form of each case (no =)

- dealing with inner options (odd/even)
- output of resource allocation
- correct logic overall
- terminating statement

[6]

[6]

		mm.
Page 4	Mark Scheme	Syllabus er
	GCE AS/A LEVEL – October/November 2013	9691

 (a) – prompt to enter name drop-down list for type drop-down calendar for date box for resource ID box for keeping place buttons/similar for other actions uses space available 	[max 6]
 (b) – title and date – heading for resource – heading for keeping place – method of grouping – use of all page 	[5]
 (c) – indentation – meaningful variable names – comments – capitalisation of keywords/variables 	[4]
<pre>(d) Flag ← 0 INPUT P X ← 1 REPEAT</pre>	
 indentation comments initialising X incrementing X correct UNTIL condition correctly adopt code in bold (do not give if 	FOR loop left in)
(e) (i) – logic error ONLY – their example (must make sense) – run-time/syntax/semantic/logic (if not – their example	above) error [4]

			2.	
Page 5	Mark Scheme	Syllabus	er	1
	GCE AS/A LEVEL – October/November 2013	9691	100	

(ii) break point is a point where the program can be halted to see the current values of variable

- memory locations and registers stepping looks at one statement at a time to see the effect of each instruction

within the function

[1]

7 (b) -

[1]

Add(2) (c) -

Add(1)

Add(0)

[3]