
® IGCSE is the registered trademark of Cambridge International Examinations.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9691 COMPUTING

9691/23 Paper 2 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner
Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most
Cambridge IGCSE

®
, Cambridge International A and AS Level components and some

Cambridge O Level components.

Page 2 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

1 (a) (i) 'D' [1]

 (ii) Error [1]

 (iii) "FRED" [1]

 (b) (i) Example solution:

 Reverse � ""

 NumberOfLetters � LENGTH(Original)

 FOR ThisLetter � 1 TO NumberOfLetters

 Letter � MID(Original, ThisLetter, 1)

 Reverse � CONCAT(Letter, Reverse)

 ENDFOR

 Marks as follows:

• Initial value of reverse is empty string

• Find length of string

• Loop for each letter

• Extract a single letter of the original string

• Build up reverse string
 [max 5]

 (ii) IF Original = Reverse [1]

2 (a) (i) Mark as follows:

• Line 03 1 mark

• Line 04 1 mark

• Line 07 1 mark

• Line 08 1 mark

 01 CALL InitialiseArray() // blank board

 02 CALL InputBoardDesign() // add slides and ladders data

 03 TotalMoves � 0

 04 FOR Game � 1 TO 1000
 05 // play next game and update TotalMoves

 06 TotalMoves � TotalMoves + NumberOfMovesInThisGame()

 07 ENDFOR // NEXT // NEXT Game

 08 AverageMovesPerGame � TotalMoves/1000
 09 OUTPUT AverageMovesPerGame

[4]

 (ii) use of procedure calls [1]

 (iii) • easier to solve (reduce complexity) by breaking down into sub-problems

• can focus on one part at a time

• easier to produce module code
[max 1]

Page 3 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

 (iv) • Assignment 03 / 06 / 08

• Iteration 04 (-07)

• function call 06
[3]

 (v) TotalMoves, Game, AverageMovesPerGame

 1 mark for 1 or 2 correct variable identifiers,2 marks for all 3 correct [2]

 (b) (i) the same number as the index

 Justification: contents of array element acts as a pointer, so if no slide/ladder then
 position is same as index.
 Alternative answer:
 0 // zero // -1
 Justification: if content of element is 0 then no slide/ladder, so no change of position.

[2]

 (ii) Marks as follows:

• correct index range

• correct data type

 Examples

 Python: Board = [0] * 31
 Board = [0 for i in range(31)]

 Pascal: VAR Board : ARRAY[1..30] OF INTEGER;

 Java / C#: int[] Board = new int[30];
 C++: int Board[30];

 VB.NET / VB6: Dim Board(30) As Integer [2]

 (iii) Marks as follows:

• correct loop from 1 to 30 (accept REPEAT or WHILE loops that work)

• assignment of initial value to array element (allow ft from part (i))

 Example Pascal

 FOR i := 1 to 30 DO

 Board[i] := i; // or zero or -1

[2]

Page 4 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

 (c) Marks as follows:

• loop (REPEAT or WHILE)

• Read number pairs

• Correct termination on input of rogue value

• Assign value b to Board[a]

 Example solution:
 INPUT a

 INPUT b

 WHILE NOT (a = 0 AND b = 0)

 Board[a] � b

 INPUT a

 INPUT b

 ENDWHILE [max 4]

 (d) (i) NumberRolled � RANDOM(5) + 1 [1]

 (ii) Marks as follows:

• declaration of local variables

• Initialisation player position

• initialise and update MovesSoFar

• Boolean expression in IF statement

• update player position

• update position if slide or ladder

• Boolean expression following UNTIL

• RETURN value

 FUNCTION NumberOfMovesInThisGame()

 DECLARE PlayerPosition : INTEGER
 DECLARE MovesSoFar : INTEGER
 DECLARE NumberRolled : INTEGER

 PlayerPosition � 1

 MovesSoFar � 0
 REPEAT

 NumberRolled � RANDOM(5) + 1

 MovesSoFar � MovesSoFar + 1
 // check that move does not go beyond final square

 IF PlayerPosition + NumberRolled <= 30
 THEN // make move

 PlayerPosition � PlayerPosition + NumberRolled
 // check for slide or ladder and, if required, move

 // IF Board[PlayerPosition] > 0
 THEN

 PlayerPosition � Board[PlayerPosition]
 ENDIF
 ENDIF

 UNTIL PlayerPosition = 30

 RETURN MovesSoFar // NumberOfMovesInThisGame � MovesSoFar

 ENDFUNCTION

 [8]

Page 5 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

 (e) Marks as follows:

• Procedure heading and ending

• Local variable for file handle

• Assign file name to file handle

• Open file for writing

• Loop 1 to 30

• Save array elements to file

• Save AverageMovePerGame to file

• close file

 Example Pascal:

 PROCEDURE SaveBoardDesign;

 VAR FileA: TextFile;

 BEGIN

 Assign (FileA, 'Design.txt');

 Rewrite(FileA);

 FOR i := 1 to 30 DO

 Writeln(FileA, Board[i]);

 Writeln(FileA, AverageMovesPerGame);

 CloseFile (FileA);

 END; [max 5]

 (f) declare a constant maxsize

 Where code requires the number of squares of the board, use this constant
 For example loop for initialising array / checking whether player has reached final square
 Only need to change value of constant if board size changes

 [max 2]

Page 6 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

3 (a) (i)

 Numbers

i j Numbers[j] >

Numbers[j + 1]

w [1] [2] [3] [4] [5]

 49 98 36 70 51 Marks:

1 1 FALSE

 2 TRUE 98 36 98 1

 3 TRUE 98 70 98

 4 TRUE 98 51 98 1

2 1 TRUE 49 36 49

 2 FALSE 1

 3 TRUE 70 51 70

 4 FALSE 1

3 1 FALSE

 2 FALSE

 3 FALSE

 4 FALSE 1

4 1 FALSE

 2 FALSE

 3 FALSE

 4 FALSE 1

1 1 1 1 1 1 Marks

 Mark by row as shown. If no marks, mark by column.

[6]

 (ii) • sorts // bubble sort

• into ascending order
 [2]

 (iii) 2 iterations [1]

 (iv) • Boolean expression is evaluated repeatedly // checks array contents repeatedly

• when no more swaps are required // when the array is already sorted
[2]

Page 7 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

 (v)
n � 4

REPEAT

 NoMoreSwaps � TRUE

 FOR j � 1 TO n
 IF Numbers[j] > Numbers[j + 1]

 THEN

 w � Numbers[j]

 Numbers[j] � Numbers[j + 1]

 Numbers[j + 1] � w

 NoMoreSwaps � FALSE
 ENDIF

 ENDFOR

 n � n - 1
UNTIL NoMoreSwaps = TRUE

 Marks as follows:

• Upper bound of FOR loop set to n

• Decrement n after FOR loop

• Set Boolean variable to TRUE in outer loop, before inner loop

• Set Boolean variable to FALSE within THEN part

• UNTIL expression correct
[5]

 (b) (i) • Indentation

• Keywords in capitals [max 1]

 (ii) Meaningful identifiers
 Annotation/comments/remarks
 Use constants (for array boundaries) [max 1]

Page 8 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 23

© Cambridge International Examinations 2015

4 (a) Example Pascal:

 FUNCTION IsLeapYear(Year: INTEGER) : BOOLEAN;

 BEGIN

 IF (Year MOD 400) = 0

 THEN

 IsLeapYear := TRUE

 ELSE

 IF (Year MOD 100) = 0

 THEN

 IsLeapYear := FALSE

 ELSE

 IF (Year MOD 4) = 0

 THEN

 IsLeapYear := TRUE

 ELSE

 IsLeapYear := FALSE;

 END;

 Marks as follows:

• function heading

• Correct use of MOD x 3 (Python, C uses %)

• Nested IFs x 3

• Correct RETURN values x 4 (VB assign to identifier)

• Indentation
 [5]

 (b) • A year that is divisible by 400 (TRUE)

• A year that is divisible by 100, but not 400 (FALSE)

• A year that is divisible by 4, but not 100 (TRUE)

• A year that is not divisible by 4 (FALSE)
 [4]

 Justification must match data value

 (c) • Integration testing

• Black box testing
 [2]

