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1 (a) (i) 'D'  [1] 

 
  (ii)  Error [1] 

 
  (iii) "FRED"  [1] 

 
 
 (b) (i) Example solution:   
 
   Reverse � "" 

   NumberOfLetters � LENGTH(Original) 

   FOR ThisLetter � 1 TO NumberOfLetters 

    Letter � MID(Original, ThisLetter, 1) 

    Reverse � CONCAT(Letter, Reverse) 

   ENDFOR 

    
   Marks as follows: 

• Initial value of reverse is empty string 

• Find length of string 

• Loop for each letter 

• Extract a single letter of the original string 

• Build up reverse string  
    [max 5]
  
  (ii) IF Original = Reverse [1] 

     
 
2 (a) (i) Mark as follows:   

• Line 03 1 mark 

• Line 04 1 mark 

• Line 07 1 mark 

• Line 08 1 mark 
 

  01 CALL InitialiseArray()  // blank board 

  02 CALL InputBoardDesign() // add slides and ladders data 

  03 TotalMoves � 0 

  04 FOR Game � 1 TO 1000 
  05 // play next game and update TotalMoves 

  06 TotalMoves � TotalMoves + NumberOfMovesInThisGame()  

  07 ENDFOR // NEXT // NEXT Game 

  08 AverageMovesPerGame � TotalMoves/1000  
  09 OUTPUT AverageMovesPerGame  

[4] 
 

  (ii) use of procedure calls [1] 
 

   (iii)  •    easier to solve (reduce complexity) by breaking down into sub-problems  

• can focus on one part at a time 

• easier to produce module code 
[max 1] 
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  (iv) • Assignment 03 / 06 / 08 

• Iteration 04 (-07) 

• function call 06 
[3] 

 
  (v) TotalMoves, Game, AverageMovesPerGame   
   

   1 mark for 1 or 2 correct variable identifiers,2 marks for all 3 correct [2] 
 
 
 (b) (i) the same number as the index   

 Justification: contents of array element acts as a pointer, so if no slide/ladder then 
 position is same as index. 
 Alternative answer: 
 0 // zero // -1 
 Justification: if content of element is 0 then no slide/ladder, so no change of position.  

[2] 
 

  (ii) Marks as follows:  

• correct index range 

• correct data type 
 
   Examples 
 
   Python: Board = [0] * 31 
   Board = [0 for i in range(31)] 

   Pascal: VAR Board : ARRAY[1..30] OF INTEGER; 

   Java / C#:  int[] Board = new int[30]; 
   C++: int Board[30]; 

   VB.NET / VB6: Dim Board(30) As Integer [2] 

 
 

  (iii) Marks as follows:   

• correct loop from 1 to 30 (accept REPEAT or WHILE loops that work) 

• assignment of initial value to array element (allow ft from part (i)) 
 
   Example Pascal 
 
  FOR i := 1 to 30 DO 

   Board[i] := i; // or zero or -1  

[2] 
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 (c) Marks as follows:  

• loop (REPEAT or WHILE) 

• Read number pairs 

• Correct termination on input of rogue value 

• Assign value b to Board[a] 
 
  Example solution: 
  INPUT a 

  INPUT b 

  WHILE NOT (a = 0 AND b = 0) 

   Board[a] � b 

   INPUT a 

   INPUT b 

  ENDWHILE [max 4] 

  
 
 (d) (i) NumberRolled � RANDOM(5) + 1 [1] 

 
  (ii) Marks as follows:   

• declaration of local variables 

• Initialisation player position 

• initialise and update MovesSoFar 

• Boolean expression in IF statement 

• update player position 

• update position if slide or ladder    

• Boolean expression following UNTIL 

• RETURN value 
 
   FUNCTION NumberOfMovesInThisGame() 

    DECLARE PlayerPosition : INTEGER 
    DECLARE MovesSoFar : INTEGER 
    DECLARE NumberRolled : INTEGER 

    PlayerPosition � 1 

    MovesSoFar � 0 
    REPEAT 

    NumberRolled � RANDOM(5) + 1  

    MovesSoFar � MovesSoFar + 1 
    // check that move does not go beyond final square 

    IF PlayerPosition + NumberRolled <= 30 
    THEN // make move 

    PlayerPosition � PlayerPosition + NumberRolled 
    // check for slide or ladder and, if required, move 

    // IF Board[PlayerPosition] > 0  
    THEN 

    PlayerPosition � Board[PlayerPosition] 
    ENDIF 
    ENDIF 

    UNTIL PlayerPosition = 30 

    RETURN MovesSoFar // NumberOfMovesInThisGame � MovesSoFar 

   ENDFUNCTION 

 [8] 
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 (e) Marks as follows:   

• Procedure heading and ending 

• Local variable for file handle 

• Assign file name to file handle 

• Open file for writing 

• Loop 1 to 30 

• Save array elements to file 

• Save AverageMovePerGame to file 

• close file 
 
  Example Pascal: 
 
  PROCEDURE SaveBoardDesign; 

  VAR FileA: TextFile; 

  BEGIN 

   Assign (FileA, 'Design.txt'); 

   Rewrite(FileA); 

   FOR i := 1 to 30 DO  

    Writeln(FileA, Board[i]); 

  Writeln(FileA, AverageMovesPerGame); 

  CloseFile (FileA); 

  END;  [max 5]

  
 
 (f) declare a constant maxsize   
 
  Where code requires the number of squares of the board, use this constant 
  For example loop for initialising array / checking whether player has reached final square 
  Only need to change value of constant if board size changes 

 [max 2]
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3 (a) (i)    
 

   Numbers 

i j Numbers[j] > 

Numbers[j + 1] 

w [1] [2] [3] [4] [5]  

   49 98 36 70 51 Marks: 

1 1 FALSE     

 2 TRUE 98  36 98  1

 3 TRUE 98  70 98   

 4 TRUE 98   51 98 1

2 1 TRUE 49 36 49    

 2 FALSE    1

 3 TRUE 70  51 70   

 4 FALSE    1

3 1 FALSE     

 2 FALSE     

 3 FALSE     

 4 FALSE    1

4 1 FALSE     

 2 FALSE     

 3 FALSE     

 4 FALSE    1

       

1 1 1 1 1 1 Marks

 
   Mark by row as shown. If no marks, mark by column.  

[6] 
 

  (ii) • sorts // bubble sort 

• into ascending order 
 [2]
  

  (iii) 2 iterations [1] 
 

  (iv)  • Boolean expression is evaluated repeatedly // checks array contents repeatedly 

• when no more swaps are required // when the array is already sorted  
[2] 
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  (v)    
n � 4 

REPEAT 

 NoMoreSwaps � TRUE 

 FOR j � 1 TO n 
 IF Numbers[j] > Numbers[j + 1] 

 THEN 

 w � Numbers[j] 

 Numbers[j] � Numbers[j + 1] 

 Numbers[j + 1] � w 

 NoMoreSwaps � FALSE 
 ENDIF 

 ENDFOR 

 n � n - 1 
UNTIL NoMoreSwaps = TRUE 

 
   Marks as follows: 

• Upper bound of FOR loop set to n 

• Decrement n after FOR loop 

• Set Boolean variable to TRUE in outer loop, before inner loop 

• Set Boolean variable to FALSE within THEN part  

• UNTIL expression correct 
[5] 

 
 

 (b) (i) •     Indentation  

• Keywords in capitals [max 1]
  

 
  (ii) Meaningful identifiers  
   Annotation/comments/remarks 
   Use constants (for array boundaries)  [max 1]
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4 (a) Example Pascal: 
 
  FUNCTION IsLeapYear(Year: INTEGER) : BOOLEAN; 

   BEGIN 

    IF (Year MOD 400) = 0 

    THEN 

     IsLeapYear := TRUE 

    ELSE 

    IF (Year MOD 100) = 0 

    THEN 

    IsLeapYear := FALSE 

    ELSE 

    IF (Year MOD 4) = 0  

    THEN  

    IsLeapYear := TRUE 

    ELSE  

    IsLeapYear := FALSE; 

   END; 

 
  Marks as follows: 

• function heading  

• Correct use of MOD x 3 (Python, C uses %) 

• Nested IFs x 3 

• Correct RETURN values x 4 (VB assign to identifier) 

• Indentation 
 [5] 

 

 (b) • A year that is divisible by 400 (TRUE)   

• A year that is divisible by 100, but not 400 (FALSE) 

• A year that is divisible by 4, but not 100 (TRUE) 

• A year that is not divisible by 4 (FALSE) 
 [4] 

  Justification must match data value  
 
 

 (c) • Integration testing  

• Black box testing 
 [2] 

 


