CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9700 BIOLOGY

9700/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

S CAMPRIDCE

www.PapaCambridge.com

Page 2	Mark Scheme Sy.	per
	Cambridge International AS/A Level – May/June 2015 970 970	2
Mark sche	me abbreviations:	Cally
;	separates marking points	Or.
1	alternative answers for the same point	Se l
R	reject	i.c.
Α	accept (for answers correctly cued by the question, or by extra guidance)	On
AW	alternative wording (where responses vary more than usual)	
<u>underline</u>	actual word given must be used by candidate (grammatical variants accepted)	

Mark scheme abbreviations:

max indicates the maximum number of marks that can be given

or reverse argument ora

marking point (with relevant number) mp

error carried forward ecf

AVP alternative valid point (examples given as guidance)

Page 3	Mark Scheme	Sy. Sper
	Cambridge International AS/A Level – May/June 2015	970
1 (a)	label L to any thylakoid membrane ;	Califille
	label R to stroma ;	Tall
		36.60
(b)	to absorb, more/maximum, light;	The state of the s
. ,		

to avoid damage by high light intensities;

[2]

- (c) 1 carbon dioxide; A CO₂
 - 2 ATP;
 - 3 reduced NADP; mp 2 and mp3 in either order

acetyl CoA;

[4]

[Total: 8]

2 (a) defective development/increased risk of miscarriage/mutation;

[1]

- **(b)** 1 idea of switch on gene/transcription;
 - detail of positional problem;
 - e.g. gene may insert in any of the chromosomes
 - e.g. gene may be within an, intron/non-coding DNA
 - e.g. gene may share promoter with host gene that does not get switched on in this cell

[2]

(c) assume metaphase I unless otherwise stated

	metaphase I		metaphase II	
1	bivalents/homologous pairs, (line up)	or	single chromosomes (line up)	;
2	chiasmata	or	no chiasmata	;
3	46/2n/diploid (number of, chromosomes)	or	23/n/haploid (number of, chromosomes)	;
4	undivided centromeres	or	dividing centromeres	;

accept from labelled diagram

[max 3]

				my				
P	age 4	4	Mark So	cheme Syl	per			
			Cambridge International AS	S/A Level – May/June 2015 970	030			
	(d)	cor 1	<i>parison - max 2</i> greater total number of oocytes v	with r-hFSH ;	Da Cambridge			
		2	greater number of, oocytes in metaphase II/secondary oocytes, with r-hFSH;					
		3 <i>exp</i>	comparative figures ; e.g. 763 v 407/634 v 323/83% v. 79%					
		4	r-hFSH purer/more concentrated	d ora				
			or u-hFSH may have degraded ;	ora	[max 3]			
	(e)	(i)	1 results same for first three d	ays;				
			2 high <u>er</u> concentration with r-h	nFSH from day 3;				
			3 greatest difference is at day	12;				
			4 highest concentration of u-higher	FSH at 3 nmol dm ⁻³ and r-hFSH at 9 nmol dm	-3			
			r-hFSH highest concentratio	on \times 3 u-hFSH;	[max 3]			
		(ii)	1 thickening of, endometrium/	lining of uterus;				
			2 development of blood capilla or endometrium/lining of uteru	aries in, endometrium/lining of uterus				
			endometriam/ining or atera	s, becomes more vascular,				
			3 inhibition of FSH, production	n/release/secretion;	[max 2]			
				J	[Total: 14]			
3	(a)	1	lots of pollen grains made so more chance of pollination;					
		2	pollen grains, light/smooth/aero so easily transported ;	odynamic,				
		3	no/small, petals/corolla/periant so stamens/anthers/stigma, out	·				
		4	long filaments so anthers outside of flower ;					
		5	anthers outside of flower/versati so pollen released ;	ile anthers,				
		6	long style so stigma outside of flower ;					

stigma outside of flower/stigma has large surface area, so traps pollen;

[max 5]

Page 5		5		Mark Scheme	Syl	per
				Cambridge International AS/A Level – May/June 2015	970 Pdg	6
(b)	1	not	not dependent on, external factors/wind;			Cambridge
		2	oth	er plants (for cross-pollination) may be at a distance;		186
		3	ma	intains (hybrid) gene pool ;		
		4	kee	eps advantageous (hybrid) characteristics in offspring;		[max 3]
	(c)	car	n bre	ed with parent species/not reproductively isolated from parent s	species;	[1]
					[Total: 9]
4	(a)	1	red	luces likelihood of harmful recessive <u>alleles</u> coming together;		
		2	to p	prevent, inbreeding depression/reduced vigour; ora		
		3	inc	reases ability (of population) to adapt to changing environment;	ora	
		4	inc	reases chances of survival when exposed to, pathogen/disease	; ora	[max 3]
	(b)	(i)	<i>ass</i> 1	sume foothills unless otherwise stated frogs (in foothills) have low(er) body temperature; ora		
			2	(lower temperatures) slow down, metabolic/enzyme-catalysed	, reactions ;	ora
			3	because, kinetic energy/collision rate, is less		
				or fewer ESCs; ora		[max 2]
		(ii)	1	idea of initially foothill populations have greater mass than lowl	and populatio	ns;
			2	(foothill) max mass reached earlier; ora		
			3	(foothill) max mass greater; ora		
			4	paired comparative figures; e.g. [mp2] 37 days v 45 days [mp3] 420 mg v 375 mg day 37 foothills 420 mg v lowland 370 mg		
			5	after day 37 foothills decreases and lowland continues to incre mass;	ase in	[max 3]
		(iii)	1	kept in identical (environmental) conditions;		
		2 (so) genes must be / environment cannot be, causing the differences;		ences;	[2]	
		(iv)	(iv) 1 (foothill population) can cope with (the effect of) cool temperatures;		ıres ;	
	2 time period available for, growth/metamorphosis, shorter in the foothills;		e foothills;			
			3	more chance of metamorphosing before, autumn/cooler weath	ner, arrives ;	[max 2]

Mark Scheme

Page 5

per

				The state of the s	Da Cambridge
Page 6		6		Mark Scheme Sy.	per
				Cambridge International AS/A Level – May/June 2015 970	SOC.
	(c)	1	tad	poles/adults, from lowlands unlikely to survive in the foothills/AW;	and.
		2	ref.	to genetic differences (between the two populations);	196
					[Total: 14]
5	(a)	arro	ow d	lownwards from cell body into long axon ;	[1]
	(b)	(i)	1	active transport;	
	. ,	.,	2	ref. to sodium potassium pump ;	
			3	sodium ions out and potassium ions in ;	
			4	against their, concentration/electrochemical, gradient;	
			5	ref. to, ion diffusion/ion leakage;	[max 3]
		(ii)	1	enter, presynaptic knob/AW;	
			2	causes vesicles;	
			3	to, move to/fuse with, presynaptic membrane;	
			4	(so) neurotransmitter released (into synaptic cleft) / exocytosis;	[max 3]
		(iii)	1	restoring Na ⁺ gradient / 34% energy, (only) in dendrites ;	
			2	recycling transmitter and setting up Ca ²⁺ gradient/6% energy, only in axor	ıs;
			3	so more mitochondria in dendrites as more energy required for processes; ora	[max 2]
					[Total: 9]
6	(a)	1	hur	mans (as selective agent) ;	
		2	sho	orthorn and Brahman bred together ;	
		3	offs	spring with ideal characteristics chosen to mate;	
		4	rep	peated over many generations ;	
		5	alle	ele frequency for ideal characteristics increases;	

directional selection;

6

[max 3]

www.PanaCambridge.com Cambridge International AS/A Level – May/June 2015 (b) any two from docility/AW; ref. to milk production; high fertility; hornlessness; ref. to meat production; disease resistance; [max 2] (c) 1 inbreeding depression/lack of hybrid vigour; 2 more chance that harmful recessive alleles may be expressed; 3 decrease in heterozygosity/increase in homozygosity; 4 less genetic variation; [max 3] [Total: 8] 7 (a) (i) adenine; [1] (ii) <u>ribose</u>; [1] **(b)** 1 loss of phosphate/hydrolysis, leads to energy release; 2 small packets of energy; 3 small/water-soluble, so can move around cell; 4 immediate energy donor; 5 link between energy-yielding and energy-requiring reactions/AW;

Mark Scheme

Page 7

6

high turnover;

[max 3]

Page 8	3	Mark Scheme	Sy. per
	Cambridge Interi	national AS/A Level – May/	
(c)_			Cally
	stage	products	ambridge
	glycolysis	pyruvate	3. CO.
		reduced NAD	
-			

stage	products
glycolysis	pyruvate
	reduced NAD
Krebs cycle	reduced NAD
	reduced FAD
	carbon dioxide / CO ₂
oxidative	NAD
phosphorylation	FAD
	water / H ₂ O

;;;

6 correct = 3 marks 4/5 correct = 2 marks 2/3 correct = 1 mark

[3]

- (d) lipids
 - more C-H bonds/more reduced/more hydrogen;
 - produces more reduced NAD;
 - 3 produces more ATP per, gram/unit mass;
 - more, aerobic respiration/oxidative phosphorylation/chemiosmosis;
 - 5 fats only broken down aerobically;

[max 2]

(e) (i) CO₂ produced divided by O₂ consumed/ratio of CO₂ produced to O₂ consumed;

ref. to volume/number of molecules/moles, of, CO₂/O₂;

in the same time/per unit time;

[max 2]

(ii) carbohydrate = 1.0;

$$lipid = 0.7 ; [2]$$

(iii) becomes greater than 1; [1]

[Total: 15]

www.PapaCambridge.com **Mark Scheme** Page 9 Cambridge International AS/A Level – May/June 2015 8 (a) (i) <u>locus</u>; (ii) having two identical alleles (of a gene); (b) parental genotypes CBCCM: CCHCCM: parental gametes offspring genotypes 4/5 **C**^B**C**^{CH} C^{CM}C^{CM};; deduct one mark for each error C_{CH}C_{CM} offspring phenotypes black black chocolate cinnamon; must link phenotypes with genotypes penalise once for wrong symbol then ecf throughout [6] [Total: 8] 9 ref. to VNTR (sequences); (a) 1 2 quantity of DNA increased by PCR; 3 DNA fragmented by, restriction enzyme(s) / endonuclease(s); loaded (into wells) in agarose gel; 4 5 (at) negative end/cathode end; 6 ref. to buffer/electrolyte; 7 direct current applied; 8 phosphate groups of DNA give negative charge;

- 10 short pieces/smaller mass, move further/move faster; **ora**
- 11 (pieces) transferred to, membrane/nylon/nitrocellulose/absorbent paper or Southern blotting;

(negatively charged) DNA attracted to, anode/positive electrode;

12 heated to separate strands;

9

- 13 probes/fluorescent dye, added;
- 14 X-ray film/UV light/lasers;
- 15 pattern of stripes/ref. banding pattern;

[max 9]

		Cambridge International AS/A Level – May/June 2015 970			
(b)	1	it is identical to human insulin ; ora (more) rapid response ; ora			
	2	(more) rapid response; ora			
	3	no/fewer, immune response/side effects/allergic reactions; ora			
	4	ref. to ethical/moral/religious, issues; ora			
	5	cheaper to produce in large volume/unlimited availability; ora R cheap to produce			
	6	less risk of, transmitting disease/infection; ora			
	7	good for people who have developed tolerance to animal insulin; ora [max 6]			
		[Total:15]			
(a)	des 1	scription enzyme mixed with sodium alginate (solution);			
	2	placed in syringe;			
	3	added drop by drop;			
	4	to (solution of) calcium chloride;			
	5	beads (with enzyme) formed;			
	6	beads separated from calcium chloride;			
	7	wash with water;			
		vantages (enzyme) can be re-used ;			
	9	product, uncontaminated/enzyme-free;			
	10	(so) purification not needed/less downstream processing;			
	11	reduces cost;			
	12	works at higher temperature/thermostable;			
	13	works in changed pH;			

14 reaction, can be fast(er) / have high(er) yield;

Mark Scheme

Page 10

10

[max 9]

age 11	Mark Scheme Sy.	per
ugo	Cambridge International AS/A Level – May/June 2015 970	- 1
(b) 1	glucose oxidase immobilised;	Cambridg
2	stuck onto, pad/ (dip)stick;	196
3	dip stick lowered into, body fluid/blood/urine;	
4	oxidises glucose (in body fluid);	
5	(changes glucose to) gluconic acid; A gluconolactone	
6	hydrogen peroxide produced;	
7	(peroxide) reacts with chromogen (on pad);	
8	produces, colour/named colour;	
9	darkness of colour/range of colours, is proportional to concentration of glucose;	
10	AVP ; e.g. peroxidases catalyse reaction/ref. to importance of fixed time to observe colour change	[max 6]

[Total: 15]