S T T 6 L =

> 8 € L O O

oEgessd Cambridge International Examinations

ERELGHER Cambridge International Advanced Subsidiary and Advanced Level
AS & A Level

CANDIDATE

NAME

CENTRE CANDIDATE
NUMBER NUMBER

COMPUTER SCIENCE
Paper 2 Fundamental Problem-solving and Programming Skills

Candidates answer on the Question Paper.
No Additional Materials are required.

No calculators allowed.

9608/23

May/June 2016

2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 16 printed pages.

CAMBRIDGE

International Examinations

DC (LK/SG) 106693/4
© UCLES 2016

[Turn over

2

There is an Appendix on the last page. Some questions will refer you to this information.

1 The items in the table below are statements from a program in a generic programming language.

For the built-in functions list, refer to the Appendix on the last page.

(@) (i) Show what type of programming construct each statement represents.

Complete the table by putting a tick (v') in the appropriate column for each item.

Item Statement

Selection

lteration

Assignment

1 | WHILE DegF > 37.5

MyName = "Gordon"

DegF = INT(DegF)

ENDIF

CASE OF MyFavourite

v W DN

UNTIL x = 5

© UCLES 2016

9608/23/M/J/16

(6]

3

(ii) State the purpose of each statement in the table in part (a)(i).

Do not use mathematical symbols in your descriptions.

Item

Purpose of statement

(iii) Evaluate the following expressions when MyString has the value

"Corrective Maintenance":

Expression Evaluates to

IPI

& MID(MyString, 13, 4)

RIGHT (MID(MyString, 6, 10) ,4)

© UCLES 2016

(6]

(2]

9608/23/M/J/16 [Turn over

4

2 The engine management system of a car includes an energy-saving facility. When certain
conditions are met, this facility will automatically stop the engine.

The system is to be software-based. It will include a subroutine, EnergySaver, which repeatedly
takes data from sensors in the car. The subroutine decides whether or not to set the EngineStop

value.

The table of identifiers used by this subroutine is shown below.

(a) Complete the identifier table below by stating the data types.

Identifier

Data type

Description

Accelerator

Accelerator pedal position
Values: 0 to 100 in steps of 1

Meaning:
0: none (not pressed)
100: maximum (fully pressed)

EngineTemp

Engine temperature in °C
(-50 to +150 stored to 1 decimal place)

NormalTemp

Normal engine temperature in °C
Whole number; typical value 90

Speed

Road speed of car (in km/hr)
Values: 0 to 200 in steps of 1

EngineStop

Value used to signal engine must be stopped

Possible values:
TRUE: stop engine
FALSE: run engine

The condition for stopping the engine is that all three of the following are true:

e Accelerator is not pressed
* Engine temperature is normal or above

e Carspeedis zero

© UCLES 2016

9608/23/M/J/16

[5]

5
The initial design stage will produce a prototype of EnergySaver, with a user interface.
The structured English for this is:

INPUT value for accelerator pedal position

INPUT value for engine temperature

INPUT value for normal engine temperature

INPUT value for car speed

EVALUATE engine stopping condition

IF stopping condition satisfied SET engine stop value to TRUE

IF stopping condition not satisfied SET engine stop value to FALSE
OUTPUT message indicating engine stop value

ONoOOAWND =

(b) Write the pseudocode equivalent of the structured English. Use the identifiers from the table
in part (a).

For the built-in functions list, refer to the Appendix on the last page.

© UCLES 2016 9608/23/M/J/16 [Turn over

6

3 String encryption was implemented using a simple character-substitution method. A function,
Decrypt, is heeded to reverse the encryption process and return the original character.

The encryption uses the 7-bit ASCII value for each character. This value is used as an index for a
1D array, Lookup, which contains the substitute characters.
Lookup contains an entry for each of the ASCII characters.

This function, Decrypt, will accept two parameters, a single character, CiphercChar, and the 1D
array, Lookup.

The steps involved in Decrypt are follows:

e Search for the character in the array

* Note the index value where the character is found (the index value is the ASCII value of the
original character)

* Use the index value to obtain the original character

(@) The first attempt at writing the pseudocode for this function is shown below.

Complete the pseudocode.

For the built-in functions list, refer to the Appendix on the last page.

FUNCTION DECEYPL (cerereererreeeeeereerereeesressesenns P et) RETURNS CHAR
DECLARE Found £ PPN
D) 3 2N PN : INTEGER
DECLARE OriginalChar : CHAR
Index < 1 L e,

Found <« FALSE
//search for CipherChar in Lookup:

= P PPN
//compare CipherChar with this array element:

R
THEN
.. //Set the flag
ELSE
I8 Lo 15 - T //Move to next array element
ENDIF
ENDWHILE

//dropped out of loop so must have found CipherChar:
.. //convert Index to original character
2 PP

ENDFUNCTION

© UCLES 2016 9608/23/M/J/16

Question 3 continues on page 8.

© UCLES 2016 9608/23/M/J/16 [Turn over

8
(b) A program is to be written to output part of the Lookup array.

The design of the algorithm is shown below.
It may be assumed that the characters output from Lookup are all printable.

(START)
¢

Input StartIndex and
NumberToOutput

$

Index <« StartIndex

Produce OriginalChar from
Index (using built-in function)

$

Assign current array element to

. Increment Ind
CipherChar eme naex

‘ A
Output message line
(see examples on the next page)

o=)

© UCLES 2016 9608/23/M/J/16

9
For example, for the input of 65 and 3, the output will be:
Index 65: Character A has substitute character Y
Index 66: Character B has substitute character Q
Index 67: Character C has substitute character F
Write program code to implement the flowchart design.
In addition to the Lookup array, assume that the following variables have been declared:

StartIndex, NumberToOutput, Index

Programming language

© UCLES 2016 9608/23/M/J/16 [Turn over

10

4 (a) Name two features of your chosen high-level programming language that support the
implementation of a modular design.

(b) (i)

(ii)

© UCLES 2016

The structure chart shows part of the design of a program for an online shopping system.

The user has already added a number of products to their virtual basket.

Draw on the chart, the symbol to show that the process of modifying the basket contents
may be iterated (repeated).

Modify Basket Contents

Input product
data

Remove
product

Change product
quantity

Each arrow in the structure chart above represents a parameter.

(1]

The table below shows the three data items that the six parameters pass between

modules.

Tick (v) to match each parameter to the correct data item.

Parameter
Data item
A B C D E F
Product ID
Quantity
Flag Value — indicating
operation success or fail
9608/23/M/J/16

[4]

11

5 Claudia stores her large collection of music CDs in different places. Claudia wants to record where
she stores each CD. She decides to write a program to do this.

Data items for a typical CD are:
Title: Kind of Green

Artist: Miles Coltrane
Location: Rack3-23

The data is to be stored in a text file, MyMusic. Each line of the text file will be a string, formed by
concatenating the three data items.

Before concatenation, the title and artist will each be made into a fixed-length string of 40
characters. Space characters may need to be added to each data item.

The location is always 8 characters long.

(@) (i) Explain the benefit of making the stored data into fixed-length strings.

© UCLES 2016 9608/23/M/J/16 [Turn over

(ii)

12

When Claudia buys a new CD, the CD data must be added to the existing file, MyMusic.
She has written a procedure in pseudocode. This has the following file-handling
statements:

OPENFILE "MyMusic" FOR WRITE

WRITEFILE "MyMusic", OutputString

CLOSEFILE "MyMusic"
There is a problem with the logic of this pseudocode.

State the problem.

(b) Claudia needs to output a list of all the CDs in a particular location.

She designs a procedure, OutputLocationList, to do this. She also chooses the following

identifiers:

Identifier Data type
CDTitle STRING
CDArtist STRING
CDLocation STRING

The procedure will:

© UCLES 2016

prompt for the name of the location

input the location (such as “Rack3-23")

search the file for all CDs at this location

output the title and artist of each CD found

output the total number of CDs found at that location (such as “17 CDs found”)

9608/23/M/J/16

13
Write program code for the procedure OutputLocationList.

Visual Basic and Pascal: You should include the declaration statements for variables.
Python: You should show a comment statement for each variable used with its data type.

Programming language

© UCLES 2016 9608/23/M/J/16 [Turn over

14
6 A string-handling function has been developed.
For the built-in functions list, refer to the Appendix on the last page.
The pseudocode for this function is shown below.

FUNCTION SF(ThisString : STRING) RETURNS STRING

DECLARE x : CHAR

DECLARE NewString : STRING
DECLARE Flag : BOOLEAN
DECLARE m, n : INTEGER

Flag < TRUE
NewString « ""
m < LENGTH(ThisString)

FORn < 1 TOm

IF Flag = TRUE
THEN
X < UCASE(MID(ThisString, n, 1))
Flag < FALSE
ELSE
X < LCASE(MID(ThisString, n, 1))
ENDIF

NewString « NewString & X
IF X = n n
THEN
Flag < TRUE
ENDIF
ENDFOR

RETURN NewString
ENDFUNCTION

(@) (i) Complete the trace table below by performing a dry run of the function when it is called
as follows:

SF("big BEN")

n X Flag m NewString

[4]

© UCLES 2016 9608/23/M/J/16

15

(ii) Describe the purpose of function SF.

(b) Test data must be designed for the function SF.

(i) State what happens when the function is called with an empty string.

(ii) The function should be thoroughly tested.
Give three examples of non-empty strings that may be used.

In each case explain why the test string has been chosen.

© UCLES 2016 9608/23/M/J/16 [Turn over

16

Appendix
Built-in functions (Pseudocode)

In each function below, if the function call is not properly formed, the function returns an error.

MID(ThisString : STRING, x : INTEGER, y : INTEGER) RETURNS STRING

returns the string of length y starting at position x from ThisString
Example: MID ("ABCDEFGH", 2, 3) will return string "BCD"

LEFT(ThisString : STRING, x : INTEGER) RETURNS STRING

returns the leftmost x characters from ThisString
Example: LEFT ("ABCDEFGH", 3) will return string "ABC"

RIGHT (ThisString: STRING, x : INTEGER) RETURNS STRING

returns the rightmost x characters from ThisString
Example: RIGHT ("ABCDEFGH", 3) will return string "FGH"

CHR(x : INTEGER) RETURNS CHAR

returns the character whose ASCII value is x
Example: CHR (87) will return 'w'

ASC(x : CHAR) RETURNS INTEGER

returns the ASCII value of character x
Example: asc('w') will return 87

LCASE(x : CHAR) RETURNS CHAR

returns the lower case equivalent character of x
Example: LCASE ('W') will return 'w'

UCASE(x : CHAR) RETURNS CHAR

returns the upper case equivalent character of x
Example: ucasg('h') will return 'H'

INT(x : REAL) RETURNS INTEGER

returns the integer part of x
Example: INT (27 .5415) will return 27

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9608/23/M/J/16

