
® IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of 7 printed pages.

© UCLES 2016 [Turn over

Cambridge International Examinations
Cambridge International Advanced Subsidiary Level

COMPUTING 9691/21

Paper 2 Written Paper May/June 2016

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE

®
,

Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

1 (a) Example Pascal: [4]

PROCEDURE PrintNameLine(Symbol : CHAR, Name : STRING)

BEGIN

 Write(Symbol, ' ');

 WRITE(Name);

 WriteLn(' ', Symbol);

END;

Mark as follows:
– correct procedure header & ending
– output symbol at either end of line
– output name
– output (2) spaces either side between name and symbol

 (b) Example Pascal: [6]

PROCEDURE PrintSymbolLine(Symbol : CHAR, LabelWidth : INTEGER)

VAR i : INTEGER;

BEGIN

 FOR i := 1 TO LabelWidth DO

 Write(Symbol);

 WriteLn();

END;

Mark as follows:
– correct procedure headings and endings
– output line of symbols to correct length
– followed by newline

PROCEDURE PrintGapLine(Symbol : CHAR, LabelWidth : INTEGER)

VAR i : INTEGER;

BEGIN

 Write(Symbol);

 FOR i := 1 TO LabelWidth – 2 DO

 Write(' ');

 WriteLn(Symbol);

END;

Mark as follows:
– output a symbol at either end
– output (LabelWidth – 2) spaces

– followed by newline

Page 3 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

 (c) (i) Example Pascal: [7]

PROCEDURE PrintNameLine(Symbol : CHAR, Name : STRING,

 LabelWidth : INTEGER)

VAR NumberOfSpaces, i : INTEGER;

 BEGIN // remember to allow for symbol at edges

 NumberOfSpaces := (LabelWidth – Length(Name) - 2) DIV 2

 Write(Symbol);

 FOR i := 1 TO NumberOfSpaces DO Write(' ');

 WRITE(Name);

 IF (LabelWidth - Length(Name)) MOD 2 > 0

 THEN NumberOFSpaces := NumberOFSpaces + 1;

 FOR i := 1 TO NumberOfSpaces DO Write(' ');

 WriteLn(Symbol);

END;

Mark as follows:
– correct procedure header & ending
– output symbol at either end of line, and name in middle
– calculate the number of spaces required
– output half number of spaces before name
– output half number of spaces after name
– check for odd number of spaces
– add extra space at front/rear

 (ii) – IF LENGTH(Name) > LabelWidth – 2 [2]

1 mark for suggesting length of name too long
1 mark for giving exact amount of excessive length

 (iii) – ask user to input a shorter name // validate length of name [2]

– loop around INPUT Name until LENGTH(Name) <= LabelWidth – 2

 (d) – reusing modules [2]

– easier to amend/maintain

 (e) – constant declaration Max [3]

– meaningful identifiers/variable names
– modules // procedure calls
– use of parameters
– indentation
– capitalised variable names/identifiers // upper case key words

Page 4 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

2 (a) Example Pascal: [2]

VAR Interval : ARRAY [1..4] OF INTEGER;

Interval[1] := 4;

Interval[2] := 2;

Interval[3] := 1;

Interval[4] := 3;

Mark as follows:
– declare array
– initialising

 (b) Mark the reason (data must match the reason) Max [4]

– travelling 1 interval
– travelling 2 intervals
– travelling 3 intervals
– travelling in opposite direction should give same result
– using stations in the middle

 (c) Example Pascal: [10]

PROCEDURE TicketCalculator;

VAR Origin, Destination, Temp, Distance, i : INTEGER;

VAR TicketPrice : Currency;

 BEGIN

 ReadLn(Origin);

 ReadLn(Destination);

 Distance := 0;

 IF Origin > Destination

 THEN

 BEGIN

 Temp := Origin;

 Origin := Destination;

 Destination := Temp

 END;

 FOR i := Origin TO Destination - 1 DO

 Distance := Distance + Interval[i];

 TicketPrice := Distance * 0.25;

 WriteLn(TicketPrice);

 END;

Mark as follows:
– declare local variables
– procedure heading and ending
– input origin and destination
– initialise distance
– swap origin and destination
– use of a temporary variable for swapping
– loop correct number of times (accept REPEAT or WHILE loops)

– add correct interval* to distance
– calculate ticket price
– output ticket price

Note: *Need to see answer to part (a)

Page 5 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

3 (a) PROCEDURE TakeBooking [11]

 DECLARE NumberOfCustomers, TableNumber : INTEGER (1)

 DECLARE Found : BOOLEAN (1)
 INPUT NumberOfCustomers

 // initialise search for a suitable table

 Found ← FALSE

 TableNumber = 0 (1)
 REPEAT // find a table with enough seats

 TableNumber ← TableNumber + 1

 IF TableSeats[TableNumber] >= NumberOfCustomers (1+1)

 AND Booked[TableNumber] = FALSE (1)
 THEN

 Found ← TRUE
 ENDIF

 UNTIL Found = TRUE OR TableNumber = 12 (1+1)
 IF Found = FALSE
 THEN // no tables left with enough seats

 OUTPUT "Sorry no tables with enough seats" (1)
 ELSE...// make the booking

 Booked[TableNumber] ← TRUE (1)

 GroupSize[TableNumber] ← NumberOFCustomers (1)
 OUTPUT "Table number booked: ", TableNumber
 ENDIF

ENDPROCEDURE

 (b) PROCEDURE CancelBooking [4]

 DECLARE TableNumber : INTEGER (1)
 INPUT TableNumber

 IF Booked[TableNumber] = FALSE (1)
 THEN

 OUTPUT "Error – this table is not booked"

 ELSE // cancel booking

 Booked[TableNumber] ← FALSE (1)

 GroupSize[TableNumber] ← 0 (1)
 OUTPUT "Booking cancelled"

 ENDIF

ENDPROCEDURE

Page 6 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

 (c) PROCEDURE AvailableTablesReport [4]
 DECLARE TableNumber : INTEGER

 FOR TableNumber ← 1 TO 12
 IF Booked[TableNumber] = FALSE

 THEN

 OUTPUT "Table Number: ", TableNumber,

 " available seats: ", TableSeats[TableNumber]

 ENDIF

 ENDFOR

ENDPROCEDURE

Mark as follows:
– loop to access every table
– check if table not booked
– output table number
– output seats available at this table

 (d) (i) Example Pascal: [5]

TYPE BookingType = RECORD

 TableSeats : INTEGER;

 Booked : BOOLEAN;

 GroupSize : INTEGER;

 CustomerName : STRING[20];

 CustomerTelNumber : STRING[15];

 AmountDepositPaid : CURRENCY;

END;

Mark as follows:
– record header & ending
– TableSeats, GroupSize correctly declared
– Booked correctly declared
– CustomerName, CustomerTelNumber correctly declared
– AmountDepositPaid correctly declared

 (ii) Example Pascal: [3]

VAR TableBookings : ARRAY[1..12] OF BookingType

Mark as follows:
– array name declaration
– array dimension
– data type

Page 7 Mark Scheme Syllabus Paper

 Cambridge International AS Level – May/June 2016 9691 21

© Cambridge International Examinations 2016

 (e) Example Pascal: Max [6]

PROCEDURE SaveToFile; (1)
BEGIN

 VAR BookingFile : FILE OF BookingType; (1)

 VAR i : INTEGER; (1)

 ASSIGNFILE (BookingFile, 'TableBookings.DAT'); (1)

 REWRITE (BookingFile); (1)

 FOR i := 1 TO 12 DO (1)

 WRITE(BookingFile, TableBookings[i]); (1)
 CLOSEFILE(BookingFile);

END;

Mark as follows:
– Procedure heading and ending
– Declare local variable
– Assign file name
– Open file for writing
– Close file
– Loop 12 times
– Write record to file

