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1 (a) Example Pascal: [4] 
 

PROCEDURE PrintNameLine(Symbol : CHAR, Name : STRING) 

BEGIN 

 Write(Symbol, '  '); 

 WRITE(Name); 

 WriteLn('  ', Symbol); 

END; 

 
Mark as follows: 
– correct procedure header & ending 
– output symbol at either end of line 
– output name 
– output (2) spaces either side between name and symbol 

 
 
 (b) Example Pascal: [6] 
 

PROCEDURE PrintSymbolLine(Symbol : CHAR, LabelWidth : INTEGER) 

VAR i : INTEGER; 

BEGIN 

 FOR i := 1 TO LabelWidth DO 

  Write(Symbol); 

 WriteLn(); 

END; 

 
Mark as follows: 
– correct procedure headings and endings 
– output line of symbols to correct length 
– followed by newline 
 
PROCEDURE PrintGapLine(Symbol : CHAR, LabelWidth : INTEGER) 

VAR i : INTEGER; 

BEGIN 

 Write(Symbol); 

 FOR i := 1 TO LabelWidth – 2 DO 

  Write(' '); 

 WriteLn(Symbol); 

END; 

 
Mark as follows: 
– output a symbol at either end 
– output (LabelWidth – 2) spaces 

– followed by newline 
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 (c) (i) Example Pascal: [7] 
 

PROCEDURE PrintNameLine(Symbol : CHAR, Name : STRING,  

   LabelWidth : INTEGER) 

VAR NumberOfSpaces, i : INTEGER; 

 BEGIN          // remember to allow for symbol at edges 

 NumberOfSpaces := (LabelWidth – Length(Name) - 2) DIV 2  

 Write(Symbol); 

 FOR i := 1 TO NumberOfSpaces DO Write(' '); 

 WRITE(Name); 

 IF (LabelWidth - Length(Name)) MOD 2 > 0  

     THEN NumberOFSpaces := NumberOFSpaces + 1; 

 FOR i := 1 TO NumberOfSpaces DO Write(' '); 

 WriteLn(Symbol); 

END; 

 
Mark as follows: 
– correct procedure header & ending 
– output symbol at either end of line, and name in middle 
– calculate the number of spaces required 
– output half number of spaces before name 
– output half number of spaces after name 
– check for odd number of spaces 
– add extra space at front/rear 

 
 
  (ii) – IF LENGTH(Name) > LabelWidth – 2 [2] 

 
1 mark for suggesting length of name too long 
1 mark for giving exact amount of excessive length 

 
 
  (iii) – ask user to input a shorter name // validate length of name [2] 

– loop around INPUT Name until LENGTH(Name) <= LabelWidth – 2 

 
 
 (d) – reusing modules [2] 

– easier to amend/maintain 
 
 
 (e) – constant declaration Max [3] 

– meaningful identifiers/variable names 
– modules // procedure calls 
– use of parameters 
– indentation 
– capitalised variable names/identifiers // upper case key words 
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2 (a) Example Pascal: [2] 
 

VAR Interval : ARRAY [1..4] OF INTEGER; 

Interval[1] := 4; 

Interval[2] := 2; 

Interval[3] := 1; 

Interval[4] := 3; 

 
Mark as follows: 
– declare array 
– initialising 

 

 

 (b) Mark the reason (data must match the reason) Max [4] 
 

– travelling 1 interval 
– travelling 2 intervals 
– travelling 3 intervals 
– travelling in opposite direction should give same result 
– using stations in the middle  

 

 

 (c) Example Pascal: [10] 
 

PROCEDURE TicketCalculator; 

VAR Origin, Destination, Temp, Distance, i : INTEGER; 

VAR TicketPrice : Currency; 

 BEGIN 

  ReadLn(Origin); 

  ReadLn(Destination); 

  Distance := 0; 

  IF Origin > Destination 

   THEN 

    BEGIN 

    Temp := Origin; 

    Origin := Destination; 

    Destination := Temp 

    END; 

  FOR i := Origin TO Destination - 1 DO 

   Distance := Distance + Interval[i]; 

  TicketPrice := Distance * 0.25; 

  WriteLn(TicketPrice); 

 END; 

 

Mark as follows: 
– declare local variables 
– procedure heading and ending 
– input origin and destination 
– initialise distance 
– swap origin and destination 
– use of a temporary variable for swapping 
– loop correct number of times (accept REPEAT or WHILE loops) 

– add correct interval* to distance 
– calculate ticket price 
– output ticket price 
 

Note: *Need to see answer to part (a) 
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3 (a) PROCEDURE TakeBooking [11] 

 DECLARE NumberOfCustomers, TableNumber : INTEGER (1) 

 DECLARE Found : BOOLEAN  (1) 
 INPUT NumberOfCustomers 

 // initialise search for a suitable table 

 Found ← FALSE 

 TableNumber = 0     (1) 
 REPEAT                  // find a table with enough seats 

  TableNumber ← TableNumber + 1 

  IF TableSeats[TableNumber] >= NumberOfCustomers   (1+1) 

   AND Booked[TableNumber] = FALSE      (1) 
   THEN 

   Found ← TRUE 
  ENDIF 

 UNTIL Found = TRUE OR TableNumber = 12    (1+1) 
 IF Found = FALSE 
  THEN        // no tables left with enough seats 

   OUTPUT "Sorry no tables with enough seats"   (1) 
  ELSE...// make the booking 

   Booked[TableNumber] ← TRUE    (1) 

   GroupSize[TableNumber] ← NumberOFCustomers   (1) 
  OUTPUT "Table number booked: ", TableNumber 
 ENDIF 

ENDPROCEDURE 

 
 
 (b) PROCEDURE CancelBooking [4] 

 DECLARE TableNumber : INTEGER  (1) 
 INPUT TableNumber 

 IF Booked[TableNumber] = FALSE    (1) 
  THEN 

   OUTPUT "Error – this table is not booked" 

  ELSE // cancel booking 

   Booked[TableNumber] ← FALSE   (1) 

   GroupSize[TableNumber] ← 0     (1) 
   OUTPUT "Booking cancelled" 

 ENDIF 

ENDPROCEDURE  
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 (c) PROCEDURE AvailableTablesReport [4] 
 DECLARE TableNumber : INTEGER 

 FOR TableNumber ← 1 TO 12 
  IF Booked[TableNumber] = FALSE 

   THEN 

    OUTPUT "Table Number: ", TableNumber,  

     " available seats: ", TableSeats[TableNumber] 

  ENDIF 

 ENDFOR 

ENDPROCEDURE 

 
Mark as follows: 
– loop to access every table 
– check if table not booked 
– output table number  
– output seats available at this table 

 
 
 (d) (i) Example Pascal: [5] 
 

TYPE BookingType = RECORD 

 TableSeats : INTEGER; 

 Booked : BOOLEAN; 

 GroupSize : INTEGER; 

 CustomerName : STRING[20]; 

 CustomerTelNumber  : STRING[15]; 

 AmountDepositPaid  : CURRENCY; 

END; 

 
Mark as follows: 
– record header & ending 
– TableSeats, GroupSize correctly declared 
– Booked correctly declared 
– CustomerName, CustomerTelNumber correctly declared 
– AmountDepositPaid correctly declared 

 
 
  (ii) Example Pascal: [3] 
 

VAR TableBookings : ARRAY[1..12] OF BookingType 

 
Mark as follows: 
– array name declaration 
– array dimension 
– data type 
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 (e) Example Pascal: Max [6] 
 

PROCEDURE SaveToFile; (1) 
BEGIN 

 VAR BookingFile : FILE OF BookingType; (1) 

 VAR i : INTEGER; (1) 

 ASSIGNFILE (BookingFile, 'TableBookings.DAT'); (1) 

 REWRITE (BookingFile); (1) 

 FOR i := 1 TO 12 DO (1) 

  WRITE(BookingFile, TableBookings[i]); (1) 
 CLOSEFILE(BookingFile); 

END; 

 
Mark as follows: 
– Procedure heading and ending 
– Declare local variable 
– Assign file name 
– Open file for writing 
– Close file 
– Loop 12 times 
– Write record to file 


