oEgessd Cambridge International Examinations

DICIGEILENl Cambridge International Advanced Subsidiary and Advanced Level
AS & A Level

CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER

> O P O € L9 ¥ 8 =

COMPUTING 9691/22

Paper 2 May/June 2016
2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 15 printed pages and 1 blank page.

CAMBRIDGE

International Examinations [Turn over

DC (CW/FD) 114986/3
© UCLES 2016

A high-level programming language has built-in string handling functions specified as follows:

ONECHAR (ThisString

For example: ONECHAR ("STOP",

STRING, x

INTEGER)

4) returns "p"

RETURNS STRING

returns a string value consisting of one character from the string ThisString at position x.

CONCAT (Stringl

For example: CONCAT ("HE",

STRING,

String?2

STRING)

"LLO") returns "HELLO"

returns a string value consisting of Stringl followed by String2.

RETURNS STRING

Use the pseudocode on the following page to complete the trace table for the function call

Process ("011101"™, "001100")
Stringl | String2 |Position | Digitl Digit2 Sum Carry Result
lI011101|l "001100" "O" mwn
(6]

© UCLES 2016

9691/22/M/J/16

3

FUNCTION Process (Stringl, String2 : STRING)
Carry < "0O"
Result < ""
FOR Position < 6 DOWN TO 1
Digitl < ONECHAR(Stringl, Position)
Digit2 < ONECHAR (String2, Position)
IF Carry = "0O"
THEN
CASE OF Digitl
"O0": Sum < Digit2
"1": CASE OF Digit2
"0™: Sum < "1
"1": Sum < "Q"
Carry < "1"
ENDCASE
ENDCASE
ELSE
CASE OF Digitl
"O0": CASE OF Digit2
"0": Sum < "1
Carry < "Q"
"1": Sum < "O"
ENDCASE

"1": CASE OF Digit2

"O" . Sum <« "O"
" l" . Sum <« "1"
ENDCASE

ENDCASE
ENDIF
Result < CONCAT (Sum, Result)
ENDFOR
RETURN Result
ENDFUNCTION

© UCLES 2016 9691/22/M/J/16

RETURNS STRING

[Turn over

4

2 Ryan wrote the following recursive function using pseudocode.

0l FUNCTION Power (Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER

02
03
04
05
06
07
08

IF Exponent = 0
THEN
Result < 1
ELSE
Result < Number * Power (Number, Exponent - 1)
ENDIF

RETURN Result

09 ENDFUNCTION

(@) (i)

(ii)

(b) (i)

(ii)

(c) (i)

© UCLES 2016

How can you recognise that this function is recursive?

A recursive solution to a problem always has a base case (the stopping condition) and a
general case.

Give the line number of the statement that is executed in the base case.

.. [2]
State the value returned by Power (3, 0)
.. [1]
State the value returned by Power (3, 1)
.. [1]
Explain what happens when the call is Power (3, -1)
.. [2]

9691/22/M/J/16

5

(ii) Describe the changes that will need to be made to function Power to address the
problem that you described in part (c)(i).

(d) An alternative method for the Power function is to use an iterative solution.
Using pseudocode, write Power as an iterative function.

FUNCTION Power (Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER

.. [4]
(e) A problem may have both an iterative solution and a recursive solution. Each has its own
benefits.
State one benefit of each solution.
1 = 1 1LY TP POTRRR R UUPPPRPORt
= o107 Y=
.. [2]

© UCLES 2016 9691/22/M/J/16 [Turn over

6

(f) Ryan uses his recursive function Power in a program. He will use debugging tools to check
the power function works as expected. The debugging tools include breakpoints, variable
watches and stepping.

(i) Identify where it is appropriate to set a breakpoint. Justify your answer.

(ii) Ryan wants to set up a variable watch window for his function.

01 FUNCTION Power (Number : INTEGER, Exponent : INTEGER) RETURNS

02
03
04
05
06
07
08

INTEGER
IF Exponent = 0
THEN
Result < 1
ELSE
Result < Number * Power (Number, Exponent - 1)
ENDIF

RETURN Result

09 ENDFUNCTION

State the variable(s) that would be appropriate to list in the variable watch window. Justify
your choice.

(iii) Explain how Ryan uses these debugging tools to check the execution of his recursive
function.

© UCLES 2016

9691/22/M/J/16

Question 3 begins on page 8.

© UCLES 2016 9691/22/M/J/16 [Turn over

8

3 A crossword puzzle is based on a grid made up of white and black squares. The white squares are
to be filled with letters to form words across the grid and down the grid.

The crossword puzzle designer provides clues for each word. Words consist of at least 2 letters.

The square where a word starts, across or down, is numbered. The numbering starts at the top left
of the grid and is consecutive, row by row.

Here is an example of a crossword grid:

(@) Zara is given a grid design of white and black squares. This design does not yet contain
numbers. Zara wants to write a program to set up a data structure for the grid data.

The data for each square will represent either:

(ii)

© UCLES 2016

a white square

a black square

a white square with a number

A white square with a number is represented by the integer value of the number.
Suggest a suitable value to represent:

] T =TT U= PSP

o] F= T <o [- U= [2]

Write program code to declare the data structure with identifier Puzz1e for a grid design
of size 11 x 11 squares.

Programming [ANQUAGEooooueiiiiiieie et e e e e e e

9691/22/M/J/16

9
(iii) Initially, all squares are to be white squares.

Write program code to initialise Puzzle.

(iv) The seventh square in the first row of the example crossword grid is black.

Write program code for the assignment statement to set the corresponding element of
Puzzle to represent black.

Programming [ANQUAGEoooueiiiiiiiie ettt e e e e e e e
.. [2]
Where there are other black squares in the design, Zara writes additional assignment
statements.

(b) The next stage for Zara is to design a procedure that numbers the relevant white squares.
A word begins in a square if the square is:
* a white square, and
* the first of a sequence of at least 2 white squares
o across or

o down

Zara starts to write the pseudocode for the procedure CheckForStartOfWord. This will
check whether a square at ThisRow and ThisColumn is the start of a word.

(i) Complete the pseudocode for the global declarations.

CONSTANT WHITE =.itiiieiiieieieeieeieeeeeeeee e e e e e e eeans // value from part(a) (i)
CONSTANT BLACK S iitiiiiiiieereieieeirereneeeenseneenasnnenannns // value from part(a) (i)
(2]

© UCLES 2016 9691/22/M/J/16 [Turn over

10
(ii) Complete the pseudocode:

PROCEDURE CheckForStartOfWord (Puzzle, ThisRow, ThisColumn, Across, Down)
Across < FALSE // will change to TRUE

// 1if a word across starts in this square

IF Puzzle[ThisROW, ThiSCOLUMN] S tiiiiiiiiiiiiiiiieiiiieereeeeeereraeaesasaraeesartesaeensnensasssareesasnsnenenss
THEN // this square is white
// check for sequence across
IF ThisColumn < 11 // check not in last column
THEN

// check this is the first column or a black square to the

left
IF (ThisColumn = 1
OR Puzzle[ThisRow, ThisColumn - 1] = BLACK)
// check that the square to the right is white
AND (PUZ Z L& [ariniieieiiacieaeae ettt e e e e e s s e s e e e e e s e s s enen e eaens] = WHITE)
THEN
Across < TRUE
ENDIF
// check for sequence down
IF ThisRow < 11 // check not in last row
THEN
// check this is the first row or a black square above
I 1 o e = 20 A
(@) S = 74 I P] = BLACK)
// check that the square below is white
N A (PRSPPI)
THEN
1 0 T
ENDIF
ENDIF
ENDIF
ENDPROCEDURE [8]

© UCLES 2016 9691/22/M/J/16

11
(iii) The procedure
CheckForStartOfWord (Puzzle, ThisRow, ThisColumn, Across, Down)
has five parameters. Parameters can be passed by reference or by value.

For each parameter, tick (v') to show how it should be passed.

Parameter By reference By value

Puzzle

ThisRow

ThisColumn

Across

Down

(3]

(c) Zara wants her program to number the squares where a word starts. She also wants the
program to create two lists, AcrossList and DownList.

AcrossList will contain the numbers of the starting squares of words going across.
DownList will contain the numbers of the starting squares of words going down.

Note that a square can be a starting square for a word going across and a word going down.
The same number would therefore be contained in both lists.

For example, the given puzzle has these lists. Squares numbered 5, 12 and 17 are starting
squares for words going across and words going down.

AcrossList DownList
1 2
5 3
7 4
8 5
9 6

11 10
12 12
13 14
16 15
17 17
18

19

© UCLES 2016 9691/22/M/J/16 [Turn over

12
Zara designs this part of the program by writing pseudocode.

Convert this pseudocode into program code.

NextNumber <= 1 // first number for numbering starting squares
a < 1 // pointer to first element of AcrossList
d <1 // pointer to first element of DownList
FOR ThisRow < 1 TO 11
FOR ThisColumn < 1 TO 11
CALL CheckForStartOfWord (Puzzle, ThisRow, ThisColumn, Across, Down)
IF Across = TRUE
THEN
AcrossList[a] < NextNumber // update AcrossList
a < a+1
ENDIF
IF Down = TRUE
THEN
DownList[d] < NextNumber // update DownList
d <= d+ 1
ENDIF
IF Across = True OR Down = TRUE
THEN
Puzzle[ThisRow, ThisColumn] < NextNumber // number the square
NextNumber < NextNumber + 1
ENDIF
ENDFOR

ENDFOR

© UCLES 2016 9691/22/M/J/16

© UCLES 2016 9691/22/M/J/16 [Turn over

14

(d) The pseudocode Zara wrote in part (b) and part (c) has some features that make it easier to
read and understand.

State four such features.

(e) Zara wants to save the contents of the data structure Puzzle to a sequential file
Puzzle.TXT

Write program code for the procedure SavePuzzleToFile (Puzzle).

© UCLES 2016 9691/22/M/J/16

15
(f) One of Zara’s friends suggests that the number of squares for a word should be counted.

Zara decides that she needs a function to count the number of squares for a word going
across. She needs another function to count the number of squares for a word going down.

The program will call the function CountSquaresAcross when ThisRow and ThisColumn
refer to a square that is the start of a word across.

Write pseudocode for the function CountSquaresAcross. Declare any local variables
required.

FUNCTION CountSquaresAcross (Puzzle, ThisRow, ThisColumn) RETURNS
INTEGER

© UCLES 2016 9691/22/M/J/16

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9691/22/M/J/16

