



# **Cambridge International Examinations**

Cambridge International Advanced Level

| CANDIDATE<br>NAME |           |            |        |           |                     |     |       |       |
|-------------------|-----------|------------|--------|-----------|---------------------|-----|-------|-------|
| CENTRE<br>NUMBER  |           |            |        |           | CANDIDATE<br>NUMBER |     |       |       |
| FURTHER MATH      | HEMATIC   | s          |        |           |                     |     | 92    | 31/13 |
| Paper 1           |           |            |        |           |                     | May | /June | 2018  |
|                   |           |            |        |           |                     |     | 3     | hours |
| Candidates answ   | er on the | Questic    | n Pap  | er.       |                     |     |       |       |
| Additional Materi | als:      | _ist of Fo | ormula | ie (MF10) |                     |     |       |       |

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.



### **BLANK PAGE**

| 1 | The variables x and y  | are such that $v = -1$ | 1 when $r=0$ and                             |
|---|------------------------|------------------------|----------------------------------------------|
| 1 | THE VALIABLES A AREA V | are such that $v = -1$ | $\mathbf{I}$ when $\lambda - \mathbf{U}$ and |

are such that 
$$y = -1$$
 when  $x = 0$  and 
$$\left(x + \frac{dy}{dx}\right)^3 = y^2 + x.$$

|                                                                | ••••      |
|----------------------------------------------------------------|-----------|
|                                                                | • • • • • |
| (ii) Find also the value of $\frac{d^2y}{dx^2}$ when $x = 0$ . | [4]       |
|                                                                | ••••      |
|                                                                |           |
|                                                                | ••••      |
|                                                                | ••••      |
|                                                                | ••••      |
|                                                                |           |
|                                                                | ••••      |
|                                                                | ••••      |
|                                                                | ••••      |
|                                                                |           |
|                                                                |           |
|                                                                | ••••      |
|                                                                | ••••      |

| 2 (i) | Verify that |
|-------|-------------|
|-------|-------------|

|                                                                                  | $\frac{n(e-1) + e}{n(n+1)e^{n+1}} = \frac{1}{ne}$ | $\frac{1}{e^n} - \frac{1}{(n+1)e^{n+1}}$ . | [1]   |
|----------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-------|
|                                                                                  |                                                   | (*** /**                                   |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
| ••••••                                                                           | •••••                                             |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            |       |
| •••••                                                                            |                                                   | •••••                                      | ••••• |
|                                                                                  |                                                   |                                            |       |
|                                                                                  |                                                   |                                            | [2]   |
| 1                                                                                |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
| 1                                                                                |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |
| 1                                                                                |                                                   |                                            | [2]   |
| $S = \sum_{n=1}^{N} \frac{n(e-1) + e}{n(n+1)e^{n+1}}.$ Express $S_N$ in terms of |                                                   |                                            | [2]   |
|                                                                                  |                                                   |                                            | [2]   |

| Find the least value of N such that $(N + 1)(S - S_N) < 10^{-3}$ . | [3] |
|--------------------------------------------------------------------|-----|
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |

|  | 3 | (i) | Use | de | Mo | ivre's | theorem | to | show | th |
|--|---|-----|-----|----|----|--------|---------|----|------|----|
|--|---|-----|-----|----|----|--------|---------|----|------|----|

| (ii) | Hence | find all | the roots | of the | equation |
|------|-------|----------|-----------|--------|----------|
|------|-------|----------|-----------|--------|----------|

| equation  |            |     |
|-----------|------------|-----|
| $x^{4}$ – | $6x^2 + 1$ | = 0 |

| in the form $\tan q\pi$ , where $q$ is a positive rational number. | [5] |
|--------------------------------------------------------------------|-----|
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |

| <b>4</b> T | he curve | C ha | s equation |
|------------|----------|------|------------|
|------------|----------|------|------------|

| ·· –       | $x^2 + 7x$       | +6 |
|------------|------------------|----|
| <i>y</i> – | $\overline{x-2}$ |    |

| (i) Find the coordinates of the points of intersection of C with the axes. | [2] |
|----------------------------------------------------------------------------|-----|
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
| (ii) Find the equation of each of the asymptotes of $C$ .                  | [3] |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |
|                                                                            |     |

(iii) Sketch C. [3]

| is given that $e$ is an eigenvector of the matrix $A$ with corresponding eigenvalue $\lambda$ .                                       |        |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|
| i) Show that $\mathbf{e}$ is an eigenvector of $\mathbf{A}^3$ and state the corresponding eigenvalue.                                 |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
|                                                                                                                                       | •••••• |
|                                                                                                                                       | •••••• |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
| is given that                                                                                                                         |        |
| $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}.$                                                                         |        |
|                                                                                                                                       |        |
| -1 - (-1  3)                                                                                                                          |        |
|                                                                                                                                       |        |
|                                                                                                                                       |        |
| i) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that                                                                    |        |
| ) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$  |        |
| ) Find a matrix ${\bf P}$ and a diagonal matrix ${\bf D}$ such that ${\bf A}^3 + {\bf I} = {\bf P}{\bf D}{\bf P}^{-1},$               |        |
| ) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$  |        |
| ) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$  |        |
| ) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$  |        |
| Find a matrix $\bf P$ and a diagonal matrix $\bf D$ such that ${\bf A}^3 + {\bf I} = {\bf P}{\bf D}{\bf P}^{-1},$                     |        |
| Find a matrix $\bf P$ and a diagonal matrix $\bf D$ such that ${\bf A}^3 + {\bf I} = {\bf P}{\bf D}{\bf P}^{-1},$                     |        |
| i) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$ |        |
| i) Find a matrix <b>P</b> and a diagonal matrix <b>D</b> such that $\mathbf{A}^3 + \mathbf{I} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$ |        |
| ) Find a matrix ${\bf P}$ and a diagonal matrix ${\bf D}$ such that ${\bf A}^3 + {\bf I} = {\bf P}{\bf D}{\bf P}^{-1},$               |        |

| 6 | The equ | uation |
|---|---------|--------|
| • |         |        |

$$9x^3 - 9x^2 + x - 2 = 0$$

has roots  $\alpha$ ,  $\beta$ ,  $\gamma$ .

|                                                                       | $y^3 - 2y - 7 = 0.$                     | ] |
|-----------------------------------------------------------------------|-----------------------------------------|---|
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
|                                                                       |                                         |   |
| sum $(3\alpha - 1)^n + (3\beta - 1)^n +$                              |                                         |   |
| sum $(3\alpha - 1)^n + (3\beta - 1)^n +$<br>Find the value of $S_3$ . |                                         |   |
|                                                                       |                                         |   |
| Find the value of $S_3$ .                                             |                                         |   |
| Find the value of $S_3$ .                                             | $(3\gamma - 1)^n$ is denoted by $S_n$ . |   |
| Find the value of $S_3$ .                                             | $(3\gamma - 1)^n$ is denoted by $S_n$ . |   |
| Find the value of $S_3$ .                                             | $(3\gamma - 1)^n$ is denoted by $S_n$ . |   |
| Find the value of $S_3$ .                                             | $(3\gamma - 1)^n$ is denoted by $S_n$ . |   |
| Find the value of $S_3$ .                                             | $(3\gamma - 1)^n$ is denoted by $S_n$ . |   |

| (iii) | Find the value of $S_{-2}$ . | [4]    |
|-------|------------------------------|--------|
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              | •••••• |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              |        |
|       |                              | •••••  |

| 7 | The lines $l$ | and $l_2$ | have | vector | equations |
|---|---------------|-----------|------|--------|-----------|
|   |               |           |      |        |           |

| $\mathbf{r} = a\mathbf{i} + 9\mathbf{j} + 13\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ | and | $\mathbf{r} = -3\mathbf{i} + 7\mathbf{j} - 2\mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})$ |
|-----------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------|
| respectively. It is given that $l_1$ and $l_2$ intersec                                                   | ct. |                                                                                                        |

| (i) | Find the value of the constant a.                                                  | [3] |
|-----|------------------------------------------------------------------------------------|-----|
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
| The | point P has position vector $3\mathbf{i} + \mathbf{j} + 6\mathbf{k}$ .             |     |
|     | Find the perpendicular distance from $P$ to the plane containing $l_1$ and $l_2$ . | [4] |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |
|     |                                                                                    |     |

| (iii) | Find the perpendicular distance from $P$ to $l_2$ . [4] |
|-------|---------------------------------------------------------|
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |

| 8 | The curves $C_1$ | and $C_2$ | have polar | equations, fo | or 0 ≤ | $\theta \leqslant \pi$ , as f | follows: |
|---|------------------|-----------|------------|---------------|--------|-------------------------------|----------|
|---|------------------|-----------|------------|---------------|--------|-------------------------------|----------|

$$C_1$$
:  $r = a$ ,  
 $C_2$ :  $r = 2a|\cos\theta|$ ,

where a is a positive constant. The curves intersect at the points  $P_1$  and  $P_2$ .

| (i)  | Find the polar coordinates of $P_1$ and $P_2$ .                       | [2] |
|------|-----------------------------------------------------------------------|-----|
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
|      |                                                                       |     |
| (ii) | In a single diagram, sketch $C_1$ , $C_2$ and their line of symmetry. | [3] |

| pole. Find                              | the area of R | , giving you | ur answer | in exact for | orm.  |        |        |                                         |
|-----------------------------------------|---------------|--------------|-----------|--------------|-------|--------|--------|-----------------------------------------|
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
| ••••••                                  | ••••••        |              | ••••••    | •••••        | ••••  | •••••• | •••••  | •••••                                   |
|                                         |               |              |           | •••••        |       |        | •••••  | •••••                                   |
|                                         |               |              |           |              |       |        |        | •••••                                   |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
| •••••                                   | •••••         | ,            | ••••••    | ••••••       | ••••• | •••••• | •••••• | • • • • • • • • • • • • • • • • • • • • |
|                                         |               |              |           |              |       |        |        | •••••                                   |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         | ••••••        |              | ••••••    | •••••        | ••••• |        | •••••  | •••••                                   |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
| ••••••                                  | ••••••••••    |              | ••••••    | ••••••       |       | •••••• | •••••  | •••••                                   |
| • • • • • • • • • • • • • • • • • • • • | ••••••        |              | •••••     | •••••        | ••••• |        | •••••  | •••••                                   |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
| •                                       | ••••••••••    |              | ••••••    | ••••••       |       | •      | •••••  | •••••                                   |
|                                         | •••••••       |              | •••••     | •••••        | ••••• |        | •••••  | •••••                                   |
| •••••                                   | •••••         |              |           |              |       |        | •••••  |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |
| •••••••                                 | ••••••        |              | ••••••    | •••••        |       |        | •••••  | ••••••                                  |
| ••••••                                  |               |              | ••••••    | •••••        |       |        | •••••  | • • • • • • • • • • • • • • • • • • • • |
|                                         |               |              |           |              |       |        |        |                                         |
|                                         |               |              |           |              |       |        |        |                                         |

| 9 For the sec | quence $u_1, u_2,$ | $u_3,,$ it is | given that u | $_{1} = 8$ and |
|---------------|--------------------|---------------|--------------|----------------|
|---------------|--------------------|---------------|--------------|----------------|

$$u_{r+1} = \frac{5u_r - 3}{4}$$

for all r.

| <b>(i)</b> | Prove | by | mathematical | induction | that |
|------------|-------|----|--------------|-----------|------|
|------------|-------|----|--------------|-----------|------|

|                                 | $u_n = 4\left(\frac{5}{4}\right)^n + 3,$ |
|---------------------------------|------------------------------------------|
| for all positive integers $n$ . | [5]                                      |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |
|                                 |                                          |

(ii) Deduce the set of values of x for which the infinite series

|       | $(u_1 - 3)x + (u_2 - 3)x^2 + \dots + (u_r - 3)x^r + \dots$           |
|-------|----------------------------------------------------------------------|
|       | is convergent. [2]                                                   |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
| (iii) | Use the result given in part (i) to find surds $a$ and $b$ such that |
|       | $\sum_{n=0}^{N} \ln(u_n - 3) = N^2 \ln a + N \ln b.$ [3]             |
|       | n=1                                                                  |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |

10 It is given that  $t \neq 0$  and

(ii)

$$t\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 9tx = 3t^2 + 1.$$

[3]

| (i | ) | Show | that | if y | = | tx | then |
|----|---|------|------|------|---|----|------|
|----|---|------|------|------|---|----|------|

| $\frac{d^2y}{dt^2} + 9y = 3t^2 + 1.$ | [3] |
|--------------------------------------|-----|
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |
|                                      |     |

| Find x in terms of t, given that $x = \frac{1}{9}\pi$ and $\frac{dx}{dt} = \frac{2}{3}$ when $t = \frac{1}{3}\pi$ . | [9]  |
|---------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                     | •••• |
|                                                                                                                     |      |
|                                                                                                                     |      |
|                                                                                                                     |      |
|                                                                                                                     |      |
|                                                                                                                     |      |
|                                                                                                                     |      |

11 Answer only **one** of the following two alternatives.

## **EITHER**

| (i) | Show that                                                                                                                       |       |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-------|
|     | $\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^x \cos x  dx = \frac{1}{2} \left( e^{\frac{1}{2}\pi} + e^{-\frac{1}{2}\pi} \right).$ | [4]   |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 | ••••• |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |
|     |                                                                                                                                 |       |

(ii) It is given that, for  $n \ge 0$ ,

$$I_n = \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^{2x} \cos^n x \, dx.$$

Show that, for  $n \ge 2$ ,

$$4I_n = n(n-1) \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^{2x} \sin^2 x \cos^{n-2} x \, dx - nI_n,$$

and deduce the reduction formula

| $(n^2+4)I_n = n(n-1)$ | $I)I_{n-2}.$ | [6]        |
|-----------------------|--------------|------------|
|                       |              |            |
| <br>                  |              | <br>•••••• |
| <br>                  |              | <br>•••••  |
| <br>                  |              | <br>       |
| <br>                  |              | <br>•••••  |
|                       |              | <br>       |
| <br>                  |              | <br>       |
|                       |              | <br>       |
| <br>                  |              | <br>•••••  |

| to $x = \frac{1}{2}\pi$ . Give your answer | r correct to 3 significant figures. |  |
|--------------------------------------------|-------------------------------------|--|
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |
|                                            |                                     |  |

OR

Let V be the subspace of  $\mathbb{R}^4$  spanned by

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\0\\2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -2\\-5\\5\\6 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0\\-3\\15\\18 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_4 = \begin{pmatrix} 0\\-2\\10\\8 \end{pmatrix}.$$

| (i) | Show that the dimension of $V$ is 3. | [3]   |
|-----|--------------------------------------|-------|
|     |                                      | ••••• |
|     |                                      | ••••• |
|     |                                      | ••••• |
|     |                                      | ••••• |
|     |                                      | ••••• |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      | ••••• |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |

| (ii)  | Express $\mathbf{v}_4$ as a linear combination of $\mathbf{v}_1$ , $\mathbf{v}_2$ and $\mathbf{v}_3$ . [2] |
|-------|------------------------------------------------------------------------------------------------------------|
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
| (iii) | Write down a basis for $V$ . [1]                                                                           |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       | $\begin{pmatrix} 1 & -2 & 0 & 0 \end{pmatrix}$                                                             |
| Let   | $\mathbf{M} = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & -5 & -3 & -2 \\ 0 & 5 & 15 & 10 \end{pmatrix}.$        |
|       | \2 6 18 8/                                                                                                 |
| (iv)  | Find the general solution of $\mathbf{M}\mathbf{x} = \mathbf{v}_1 + \mathbf{v}_2$ . [6]                    |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |
|       |                                                                                                            |

| •••••                                   |                                       | •••••            | ••••••                                     | ••••••                      | ••••• |
|-----------------------------------------|---------------------------------------|------------------|--------------------------------------------|-----------------------------|-------|
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
| • • • • • • • • • • • • • • • • • • • • | ••••                                  |                  | ••••                                       |                             |       |
|                                         |                                       |                  |                                            |                             |       |
| ••••••                                  | ••••••••••••                          | ••••••           | •••••                                      | •••••                       |       |
| •••••                                   |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
| •••••                                   | ••••••••••••                          | ••••••           | •••••                                      | •••••                       |       |
|                                         |                                       |                  |                                            |                             |       |
| •••••                                   |                                       |                  | •••••                                      |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       | ••••••           | •••••                                      |                             |       |
| set of eleme                            | nts of $\mathbb{R}^4$ which a         | are not solution | s of $\mathbf{M}\mathbf{x} = \mathbf{v}_1$ | + v <sub>2</sub> is denoted | by W. |
|                                         | a reason, whether                     |                  |                                            | 2                           | ·     |
| ,                                       | ,                                     |                  |                                            |                             |       |
| •••••                                   | · · · · · · · · · · · · · · · · · · · | •••••            | •••••                                      |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |
| •••••                                   |                                       | •••••            |                                            |                             |       |
|                                         |                                       |                  |                                            |                             |       |

### **Additional Page**

| If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |
|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.