

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER			
FURTHER MAT	HEMATICS						9231/11
Paper 1				0	ctober/	Novem	ber 2019
							3 hours
Candidates ans	wer on the 0	Question Par	per.				
Additional Mate	rials: Li	st of Formula	ae (MF10)				

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

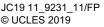
Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 22 printed pages and 2 blank pages.

coordinates of the centroid of the region enclosed by C , the line $x = 1$ and the x -axis.

It is given that $y = \ln(ax + 1)$, who for every positive integer n ,	ere a is a positive constant.	Prove by mathematical induction that,
for every positive integer n,	$\frac{d^n y}{dx^n} = (-1)^{n-1} \frac{(n-1)! a^n}{(ax+1)^n}.$	[6]

3 The integral I_n , where n is a positive integer, is defined by

$$I_n = \int_{\frac{1}{2}}^1 x^{-n} \sin \pi x \, \mathrm{d}x.$$

(i)	Show that	
	$n(n+1)I_{n+2} = 2^{n+1}n + \pi - \pi^2 I_n.$	[5
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • •
(ii)	Find I_5 in terms of π and I_1 .	[2
	J I	
		••••

4 The line y = 2x + 1 is an asymptote of the curve C with equation

$$y = \frac{x^2 + 1}{ax + b}.$$

(i)	Find the values of the constants a and b .	[3]
(ii)	State the equation of the other asymptote of C .	[1]
(iii)	Sketch C. [Your sketch should indicate the coordinates of any points of intersection v	with the

y-axis. You do not need to find the coordinates of any stationary points.] [3]

5 Let
$$S_N = \sum_{r=1}^N (5r+1)(5r+6)$$
 and $T_N = \sum_{r=1}^N \frac{1}{(5r+1)(5r+6)}$.

(i)	Use standard	recults from	the List of	Formulae (MF10) to	show that
(1)	Use standard	. resuits from	Tune List of	ronnuae (MILLOU IO	Show that

	$S_N = \frac{1}{3}N(25N^2 + 90N + 83).$	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Use the method of differences to express T_N in terms of N .	[4]
		••••••
		•••••

		•••••
		•••••
		•••••
		•••••
(iii)	Find $\lim_{N\to\infty} (N^{-3}S_N T_N)$.	[2]
	$N \rightarrow \infty$	
		•••••
		•••••

6	With O as the origin, the points A , B , C have position vectors
	$\mathbf{i} - \mathbf{j}$, $2\mathbf{i} + \mathbf{j} + 7\mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{k}$
	respectively.
	(i) Find the shortest distance between the lines <i>OC</i> and <i>AB</i> . [5]

© UCLES 2019 9231/11/O/N/19

Find the cartesian equation of the plane containing the line OC and of the lines OC and AB .	[4]

- 7 The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α , β , γ .
 - (i) Use the relation $x^2 = -7y$ to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

has roots $\frac{\alpha}{\beta\gamma}$, $\frac{\beta}{\gamma\alpha}$, $\frac{\gamma}{\alpha\beta}$.	[4]
	•••••
	•••••
	•••••

(ii)	Show that $\frac{\alpha^2}{\beta^2 \gamma^2} + \frac{\beta^2}{\gamma^2 \alpha^2} + \frac{\gamma^2}{\alpha^2 \beta^2} = \frac{58}{49}.$	[3]
(iii)	Find the exact value of $\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\beta^3}{\gamma^3 \alpha^3} + \frac{\gamma^3}{\alpha^3 \beta^3}$.	[2]
(iii)		
(iii)	Find the exact value of $\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\beta^3}{\gamma^3 \alpha^3} + \frac{\gamma^3}{\alpha^3 \beta^3}$.	
(iii)		

$$\mathbf{M} = \begin{pmatrix} 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{pmatrix},$$

where $m \neq 0, 1, 2$.

Find a matrix P and a diagonal matrix D such that $\mathbf{M} = \mathbf{PDP}^{-1}$.	[7]

(ii)	Find $\mathbf{M}^7 \mathbf{P}$. [3]

9 (i) Use de Moivre's theorem to show that

6.0	$\sec^6 \theta$	563
$\sec 6\theta =$	$= \frac{\sec^6 \theta}{32 - 48 \sec^2 \theta + 18 \sec^4 \theta - \sec^6 \theta}$. [6]
	32 - 40 sec 0 + 10 sec 0 - sec 0	
		•••••
		••••••
•••••		•••••
		••••••
		•••••

Hence obtain the roots of					
	$3x^6 - 36x^4 + 9$	$6x^2 - 64 = 0$			
in the form $\sec q\pi$, where	q is rational.			[:	5]
	••••••			••••••	•••
	•••••				•••
					.
					· • •
	•••••	••••••••••	•••••••	•••••	•••
					•••
					•••
					· • •
					.
	••••••			••••••	•••
					•••
					.
					.
	•				••
					• • •
	•••••				• • •
					.

10 The matrix A is defined by

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 \\ 1 & -2 & -2 \\ 2 & 3 & \theta \end{pmatrix}.$$

(i) (a)	Find the rank of A when $\theta \neq -1$.	[3]
(b)	Find the rank of A when $\theta = -1$.	[1]
Consider	the system of equations	
	x + 5y + z = -1,	
	x - 2y - 2z = 0,	
	$2x + 3y + \theta z = \theta.$	
(ii) Solv	we the system of equations when $\theta \neq -1$.	[3]
•••••		

(iii)) Find the general solution when $\theta = -1$.	[3]
(iv)) Show that if $\theta = -1$ and $\phi \neq -1$ then $\mathbf{A}\mathbf{x} = \begin{pmatrix} -1 \\ 0 \\ \phi \end{pmatrix}$ has no solution.	[2]
	$\langle \phi \rangle$	

11 Answer only **one** of the following two alternatives.

EITHER

It is given that $w = \cos y$ and

$$\tan y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 2\tan y \frac{dy}{dx} = 1 + e^{-2x}\sec y.$$

vii show mai	(i)	Show that	t
--------------	-----	-----------	---

	$\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + 2\frac{\mathrm{d}w}{\mathrm{d}x} + w = -\mathrm{e}^{-2x}.$		[4]
		,	
		· • • • • • • • • • • • • • • • • • • •	
(ii)	Find the particular solution for y in terms of x, given that when $x = 0$, $y = \frac{1}{3}\pi$ and $\frac{dy}{dx} = \frac{1}{3}\pi$	$=\frac{1}{\sqrt{3}}.$	[10]
		· • • • • • • • • • • • • • • • • • • •	

			•••••			••••••
••••••		••••••	•••••		•••••••	•••••
••••••			•••••			•••••
••••••	•••••	••••••	•••••		••••••	•••••
			•••••			•••••
•••••				•••••		•••••
••••••						••••••
••••••			•••••			
						•••••
						•••••
						•••••
						•••••
	•••••					•••••
						•••••
						•••••

OR

The curves C_1 and C_2 have polar equations, for $0 \leqslant \theta \leqslant \frac{1}{2}\pi$, as follows:

$$C_1 : r = 2(e^{\theta} + e^{-\theta}),$$

 $C_2 : r = e^{2\theta} - e^{-2\theta}.$

The curves intersect at the point P where $\theta = \alpha$.

$4\sqrt{2}$.	$-2e^{\alpha}-1=0.$	Trenee inic	the exact	varae or a a	ind snow the	it the value ([6]
•••••	•••••			•••••	•••••	•••••	•••••
				•••••			

(ii) Sketch ${\cal C}_1$ and ${\cal C}_2$ on the same diagram.

(iii)	Find the area of the region enclosed by C_1 , C_2 and the initial line, giving your answer correct to 3 significant figures. [5]

[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019 9231/11/O/N/19

