

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDIDATE IUMBER				
FURTHER MAT	HEMATI	cs							923	31/21
Paper 2						C	Octobe	r/Nove	ember	2019
									3 I	hours
Candidates ans	wer on th	e Questi	on Papeı	r.						
Additional Mater	rials:	List of F	ormulae	(MF10)						

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

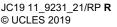
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s⁻².

The use of a calculator is expected, where appropriate.

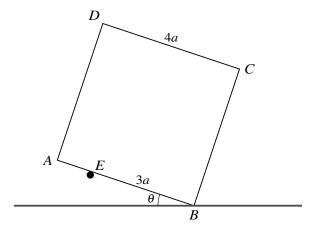
Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 23 printed pages and 1 blank page.



BLANK PAGE

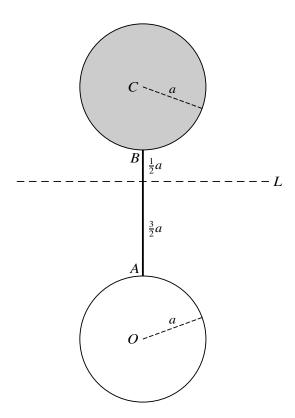
					Compone	or 		of <i>P</i> at this in
•••••		•••••			• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••
•••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••
••••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	••••••
•••••	•••••	••••••	•••••	•••••				•••••
•••••	•••••	••••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
				•••••	•••••			•••••
••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••

[Turn over

A uniform square lamina ABCD of side 4a and weight W rests in a vertical plane with the edge AB inclined at an angle θ to the horizontal, where $\tan \theta = \frac{1}{3}$. The vertex B is in contact with a rough horizontal surface for which the coefficient of friction is μ . The lamina is supported by a smooth peg at the point E on AB, where BE = 3a (see diagram).

(i)	Find expressions in terms of W for the normal reaction forces at E and B .	[5]

(ii)	Given that the lamina is about to slip, find the value of μ . [3]


	ith speed u .
(i)	Show that the speed of A after its collision with B is $\frac{1}{2}u(1-e)$ and find the speed of B.
	ere B now collides with sphere C . Subsequently there are no further collisions between any
	eres.
(11)	Find the set of possible values of e .

PapaCambridge

				••••••
 				•••••••••••••••••••••••••••••••••••••••
 •••••••••••••••••••••••••••••••••••••••			••••••	•••••••••••••••••••••••••••••••••••••••
 •••••	•••••	••••••	••••••	••••••
 •••••	•••••		••••••	••••••
 				•••••

Show that $\cos \theta = \frac{2}{3}$.	
	••••••

(ii)	Find the greatest height, above the horizontal through O , reached by P in its subsequent motion. [4]

A thin uniform rod AB has mass λM and length 2a. The end A of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre O, mass 3M and radius a. The end B of the rod is rigidly attached to the surface of a uniform solid sphere with centre C, mass 5M and radius a. The rod lies along the line joining the centres of the spheres, so that CBAO is a straight line. The horizontal axis L is perpendicular to the rod and passes through the point of the rod that is a distance $\frac{1}{2}a$ from B (see diagram). The object consisting of the rod and the two spheres can rotate freely about L.

(i)	Show that the moment of inertia of the object about L is $\left(\frac{408 + 7\lambda}{12}\right)Ma^2$. [6]

The	period of small oscillations of the object about L is $5\pi\sqrt{\left(\frac{2a}{g}\right)}$.
(ii)	Find the value of λ . [6]

[Turn over

A random sample of 9 members is taken from the large number of members of a sports club, and

	Find an unbiased estimate for the population variance.
)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of 9 members.

7

The time, T days, before an electrical component develops a fault has distribution function F given by

	$F(t) = \begin{cases} 1 - e^{-at} \\ 0 \end{cases}$		
where a is a positive constant	t. The mean value of	T is 200.	
(i) Write down the value of	a.		
(ii) Find the probability that			ops a fault in less than 150
a piece of equipment contai ther. The probability that, a greater than 0.99.			
ther. The probability that, a	fter 150 days, at least		
ther. The probability that, a greater than 0.99.	fter 150 days, at least		
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a
ther. The probability that, as greater than 0.99. iii) Find the smallest possib	fter 150 days, at least leave of n .	one of the <i>n</i> compo	onents has not developed a

	$\Sigma x = 32.4$	$\Sigma x^2 = 131.82$	2	
A random sample of 10 e 3.78 tonnes and an unbiase elephants in regions <i>A</i> and at the 10% significance lemean weight of elephants in the 10% of eleph	ed variance estimate <i>B</i> are both assumed vel whether the me	of 0.1555 tonr I to be normal v	nes ² . The distribution with the same popula	ns of the weights of ation variance. Test
				•••••

Papa Cambridge

9 A random sample of five pairs of values of x and y is taken from a bivariate distribution. The values are shown in the following table, where p and q are constants.

х	1	2	3	4	5
у	4	p	q	2	1

The equation of the regression line of y on x is y = -0.5x + 3.5.

(i)	Find the values of p and q .	[7]
		••••••
		•••••
		•••••

(ii)	Find the value of the product moment correlation coefficient. [3]

10	The random	variable X has	probability	density	function	f given	by

$$f(x) = \begin{cases} \frac{1}{30} \left(\frac{8}{x^2} + 3x^2 - 14 \right) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
The	e random variable Y is defined by $Y = X^2$.	
	Find the probability density function of <i>Y</i> .	[4]

(iii)	Find the value of y such that $P(Y < y) = 0.8$. [3]

11 Answer only **one** of the following two alternatives.

EITHER

The points A and B are a distance 1.2 m apart on a smooth horizontal surface. A particle P of mass $\frac{2}{3}$ kg is attached to one end of a light spring of natural length 0.6 m and modulus of elasticity 10 N. The other end of the spring is attached to the point A. A second light spring, of natural length 0.4 m and modulus of elasticity 20 N, has one end attached to P and the other end attached to B.

1)	Show that when P is in equilibrium $AP = 0.75$ m.	[3]
	particle P is displaced by 0.05 m from the equilibrium position towards A and then rele	ancad from
ne j st.		cased from
st.		
st.		[6]
st.		[6]
st.	Show that P performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that P performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that P performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]
st.	Show that <i>P</i> performs simple harmonic motion and state the period of the motion.	[6]

		• • •
		•••
		•••
		• • •
		• • •
(:::)	Find the speed of D when it passes through the equilibrium position	דכ
(III)	Find the speed of P when it passes through the equilibrium position.	2]
		• • •
		•••
		• • •
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	31
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value. [3]	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value. [3]	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value. [3]	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value. [3]	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of <i>P</i> when its acceleration is equal to half of its maximum value.	3]

[Turn over

OR

The number of puncture repairs carried out each week by a small repair shop is recorded over a period of 40 weeks. The results are shown in the following table.

Number of repairs in a week	0	1	2	3	4	5	≥ 6
Number of weeks	6	15	9	6	3	1	0

(i) Calculate the mean and vari suitability of a Poisson dist				s in a wee	k and com	ment on	the possible [3]
	•••••			•••••		•••••	
	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	
following table shows some of t 40 weeks using a Poisson distrib Number of repairs in a week				3	4	5	≥6
Expected frequency	8.076	12.921	10.337	5.513	2.205	а	<i>b</i>
(ii) Show that $a = 0.706$ and fin	nd the val	ue of the o	constant b				[3]

PapaCambridge

(iii)	Carry out a goodness of fit test of a Poisson distribution with mean 1.6, using a 10% significance level.

Additional Page

must be clearly shown.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019 9231/21/O/N/19

