

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9117044394

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

October/November 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

BLANK PAGE

(a)	State the value of d .	
(b)	Find a cubic equation, with coefficients in terms of b and c , whose roots are a	$\alpha+1, \beta+1, \gamma$
(c)	Given also that $\gamma + 1 = -\alpha - 1$, deduce that $(c - 2b + 3)(b - 3) = b - c$.	
(c)	Given also that $\gamma + 1 = -\alpha - 1$, deduce that $(c - 2b + 3)(b - 3) = b - c$.	
(c)		

•••••	•••••	 	•••••	 •
		 		 ••••••
		 		 •••••
		 		 •
		 	•••••	 ••••••
		 		 •••••
		 		 •••••
••••••		 	•••••	
		 		 •••••

3

	By simplifying $(x^n - \sqrt{x^{2n} + 1})(x^n + \sqrt{x^{2n} + 1})$, show that $\frac{1}{x^n - \sqrt{x^{2n} + 1}} = -x^n - x^n - $	$-\sqrt{x^{2n}+1}$. [1]
Let	$u_n = x^{n+1} + \sqrt{x^{2n+2} + 1} + \frac{1}{x^n - \sqrt{x^{2n} + 1}}.$	
(b)	Use the method of differences to find $\sum_{n=1}^{N} u_n$ in terms of N and x.	[3]
(c)	Deduce the set of values of x for which the infinite series	
(c)	beduce the set of values of x for which the infinite series	
	$u_1 + u_2 + u_3 + \dots$	
	$u_1 + u_2 + u_3 + \dots$ is convergent and give the sum to infinity when this exists.	[3]
	1 2 3	[3]
	1 2 3	[3]
	1 2 3	[3]
	1 2 3	[3]
	1 2 3	[3]
	1 2 3	[3

4 The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}.$$

a)	Give full details of the geometrical transformation in the x - y plane represented by \mathbf{A} .	[1]
o)	Give full details of the geometrical transformation in the x - y plane represented by B .	[2]
he	triangle DEF in the x - y plane is transformed by \mathbf{AB} onto triangle PQR .	
:)	Show that the triangles <i>DEF</i> and <i>PQR</i> have the same area.	[3]

(d)	Find the matrix which transforms triangle PQR onto triangle DEF .
(e)	Find the equations of the invariant lines, through the origin, of the transformation in the x - y plane represented by \mathbf{AB} .

The	The curve C has polar equation $r = \ln(1 + \pi - \theta)$, for $0 \le \theta \le \pi$.						
(a)	Sketch C and state the polar coordinates of the point of C furthest from the pole.	[3					
(b)	Using the substitution $u = 1 + \pi - \theta$, or otherwise, show that the area of the region encloand the initial line is	sed by					
	$\frac{1}{2}(1+\pi)\ln(1+\pi)(\ln(1+\pi)-2)+\pi.$	[6					
		•••••					
		••••••					
		•••••					
		•••••					

(c)	Show that, at the point of C furthest from the initial line,
(0)	
	$(1+\pi-\theta)\ln(1+\pi-\theta)-\tan\theta=0$
	and verify that this equation has a root between 1.2 and 1.3. [5]

6	Let a	be a	positive	constant.

(a)	The curve C_1 has equation $y = \frac{x - a}{x - 2a}$.	[2]
	Sketch C_1 .	

The curve C_2 has equation $y = \left(\frac{x-a}{x-2a}\right)^2$. The curve C_3 has equation $y = \left|\frac{x-a}{x-2a}\right|$.

(b)	(i)	Find the coordinates of any stationary points of C_2 .	[3]
			· • • • •
			· • • • •

(ii)	Find also the coordinates of any points of intersection of C_2 and C_3 . [3]]
Ske	tch C_2 and C_3 on a single diagram, clearly identifying each curve. Hence find the set of value	S
of x	for which $\left(\frac{x-a}{x-2a}\right)^2 \le \left \frac{x-a}{x-2a}\right $. [5]]

(c)

$$-2\mathbf{i}+2\mathbf{j}-\mathbf{k}$$
, $-2\mathbf{i}+\mathbf{j}+2\mathbf{k}$, $-2\mathbf{j}+\mathbf{k}$,

respectively, relative to the origin O.

	•	c ibe, giving you	ir uniswer in the for	m ax + by + cz = d.	
					•••••
					•••••
					•••••
	•••••				
Find the acu	te angle between	the planes <i>OBC</i> a	nd <i>ABC</i> .		
Find the acu	e angle between	the planes <i>OBC</i> a	nd <i>ABC</i> .		
Find the acu	e angle betweer	the planes <i>OBC</i> a	nd <i>ABC</i> .		
Find the acu	te angle between	the planes <i>OBC</i> a	nd ABC.		
	te angle betweer		nd ABC.		

The point D has position vector $t\mathbf{i} - \mathbf{j}$.

U)	en that the shortest distance between the lines AB and CD is $\sqrt{10}$, find the value of t.	[6]
•••		
•••		•••••
•••		
••		
••		
••		
••		
••		••••••
· • •		

Additional Page

If you use must be cle	the following early shown.	g lined page t	o complete 1	the answer(s	s) to any que	estion(s), the o	question nur	nber(s)
								•••••
								•••••
								•••••
		•••••						•••••
								•••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.