

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4597910349

FURTHER MATHEMATICS

9231/21

Paper 2 Further Pure Mathematics 2

October/November 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

	By differentiating e^{-x^2} , find the Maclaurin's series for e^{-x^2} up to and including the term in
	1
b)	Deduce an approximation to $\int_0^{\frac{1}{5}} e^{-x^2} dx$, giving your answer as a rational fraction in its low terms.

	2	The variables	x and y are	related by the	differential e	equation
--	---	---------------	---------------	----------------	----------------	----------

by the differential equation
$$9 \frac{d^2 y}{dx^2} + 6 \frac{dy}{dx} + y = 3x^2 + 30x.$$

(a)	Find the general solution for y in terms of x .	[6]
(b)	State an approximate solution for large positive values of x .	[1]

[2]

3 (a) Show that the system of equation	ions
--	------

x-2y+kz=1, $-x+2y+2z=1,$ where k is a constant, does not have a unique solution.
*
where k is a constant, does not have a unique solution
where wis a constant, does not have a unique solution.

(b)	Given that $k=-4$, show that the system of equations in part (a) is consistent. Interpret this situation geometrically. [3]

this situatio	ii geometri	•						
•	•••••				•••••	•		
				•••••				
	•••••	· 	•••••		•••••		•••••	
		,						
• • • • • • • • • • • • • • • • • • • •		, 		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	where $k \neq 1$ is situation			w that the s	ystem of equ	ations in pa	art (a) is in	onsi
				w that the s	ystem of equ	ations in pa	art (a) is in	iconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	iconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	nconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	nconsi
				v that the s	ystem of equ	ations in pa	art (a) is ir	nconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	iconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	iconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	iconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the s	ystem of equ	ations in pa	art (a) is ir	nconsi
				w that the s	ystem of equ	nations in pa	art (a) is in	nconsi
				w that the sy	ystem of equ	ations in pa	art (a) is in	nconsi

4

The diagram shows the curve with equation $y = 1 - x^3$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of the rectangles, show that

$\int_0^1 (1-x^3) \mathrm{d}x$	$4x \leqslant \frac{3n^2 + 2n - 1}{4n^2}.$	[4]

(b)	Use a similar method to find, in terms of n , a lower bound for $\int_0^1 (1-x^3) dx$. [4]

_	w .			. 4
5	It.	10	given	that
J	11	19	given	uiai

$$x = \sinh^{-1}t, \quad y = \cos^{-1}t,$$

where -1 < t < 1

By differentiating $\cos y$ with respect to t , show that $\frac{dy}{dt} = -\frac{1}{\sqrt{1-t^2}}$.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

	nd $\frac{d^2y}{dx^2}$ in terms of t, simplifying your answer.	
•••		•••••
•••		
•••		
•••		
•••		
•••		
•••		
•••		•••••

Use de Moivre's theorem to show that $\sin^4 \theta = \frac{1}{8}(\cos 4\theta - 4\cos 2\theta + 3)$.	
	•••••

Find the solution of the differential equation					
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} + y\cot\theta = \sin^3\theta$				
for which $y = 0$ when $\theta = \frac{1}{2}\pi$.					

7 The matrix **P** is given by

$$\mathbf{P} = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

a)	State the eigenvalues of P .	[1]
b)	Use the characteristic equation of \mathbf{P} to find \mathbf{P}^{-1} .	[4]

The 3×3 matrix **A** has distinct eigenvalues b, -1, 1 with corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

respectively. (c) Find A in terms of b. [4]

	Sketch the graph of $y = \coth x$ for $x > 0$ and state the equations of the asymptotes.	
(b)	Starting from the definitions of coth and cosech in terms of exponentials, prove that	
` /	$\coth^2 x - \operatorname{cosech}^2 x = 1.$	
		•••••

The	e curve C has equation $y = \ln \coth(\frac{1}{2}x)$ for $x > 0$.	
(c)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\operatorname{cosech}x$.	[3]
(d)	It is given that the arc length of C from $x = a$ to $x = 2a$ is $\ln 4$, where a is a posit	ive constant.
	Show that $\cosh a = 2$ and find, in logarithmic form, the exact value of a .	[7]

Additional Page

must be	clearly showr	1.			(s), the question	
		•••••				
	••••••	•••••	••••••	 		
		•••••		 		
••••••				 		•••••
	•••••			 		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.