Cambridge International AS & A Level | FURTHER MA | ATHEMATICS | | 9231/2 | |-------------------|------------|---------------------|--------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CANDIDATE
NAME | | | | Paper 2 Further Pure Mathematics 2 October/November 2020 2 hours You must answer on the question paper. You will need: List of formulae (MF19) ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do **not** write on any bar codes. - If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown. - You should use a calculator where appropriate. - You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator. - Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question. ## **INFORMATION** - The total mark for this paper is 75. - The number of marks for each question or part question is shown in brackets []. This document has **16** pages. Blank pages are indicated. DC (RW/SG) 187470/2 © UCLES 2020 | Find the Maclaurin | | | | | | |---|-------------------|------------------|------------------|--------------------|---------------------| | | | ••••• | | | | | | | | ••••• | ••••• | ••••• | ••••• | | ••••• | | | | | ••••• | | | | | | | | | | | | | ••••• | ••••• | | ••••• | ••••• | | | | | | | | | | | | | | | | | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | A curve has equation π about the x -axis. | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π | | _ | nerated when the | e curve is rotated | through 2π radi | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | | Find, in terms of π about the <i>x</i> -axis. | and e, the area o | f the surface ge | | | | © UCLES 2020 | agation $(w \perp 1)^6 = 1$ giving your answers i | in the form x⊥iv where x and | |---|---| quation $(w+1)^6 = 1$, giving your answers | | 4 | Find | the solution | of the | differential | equation | |---|------|--------------|--------|--------------|----------| |---|------|--------------|--------|--------------|----------| | $x \frac{dy}{dy}$ | + 2v | = | e^x | |----------------------|--------------|---|-------| | $\frac{\lambda}{dr}$ | $1 \Delta y$ | _ | C | | for which $y = 3$ when $x = 1$. Give your answer in the form $y = f(x)$. | [8] | |--|-----| $y^2 + (xy+1)^2 = 5.$ | | |-----|--|--| | (a) | Show that, at the point (1,1) on C, $\frac{dy}{dx} = -\frac{2}{3}$. | 2 | | | (b) | Find the value of $\frac{d^2y}{dx^2}$ at the point (1,1). | © UCLES 2020 | Find the particular solution of the | | | |---------------------------------------|--|------| | | $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 15x = 102\cos 3t,$ | | | given that, when $t = 0$, $x = 1$ ar | $\operatorname{nd} \frac{\mathrm{d}x}{\mathrm{d}t} = 0.$ | [11] | © UCLES 2020 | 9231/22/O/N/20 | [Turn over | |--------------|----------------|------------| | 7 | (a) | Show that $\sum_{r=1}^{n} z^{2r} = \frac{z^{2n+1} - z}{z - z^{-1}}$, for $z \neq 0, 1, -1$. | [2] | |---|-----|---|-------| ••••• | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | $1 + 2 \sum_{r=1}^{r} \cos(2r\theta)$ | $\theta) = \frac{\sin(2n+1)\theta}{\sin\theta}.$ | [5] | |---------------------------------------|--|-----| | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | |
 | | | | | | | | | | | |
 | | | © UCLES 2020 8 © UCLES 2020 The diagram shows the curve $y = \frac{1}{\sqrt{x^2 + x + 1}}$ for $x \ge 0$, together with a set of *n* rectangles of unit width. By considering the sum of the areas of these rectangles, show that | $\sum_{r=1} \frac{1}{\sqrt{r^2 + r + 1}} < \ln\left(\frac{1}{3} + \frac{2}{3}n + \frac{2}{3}\sqrt{n^2 + n + 1}\right).$ | [10] | |---|------| 9231/22/O/N/20 | © UCLES 2020 | 9231/22/O/N/20 | [Turn over | |--------------|----------------|------------| - 9 It is given that a is a positive constant. - (a) Show that the system of equations | ax + (2a+5)y + (a+1)z | = | 1, | |-----------------------|---|----| | -4y | = | 2, | | 3y-z | = | 3, | | has a unique solution and interpret this situation geometrically. | | |---|-------| | | | | | ••••• | The matrix **A** is given by $$\mathbf{A} = \begin{pmatrix} a & 2a+5 & a+1 \\ 0 & -4 & 0 \\ 0 & 3 & -1 \end{pmatrix}.$$ | (b) | Show that the eigenvalues of A are a , -1 and -4 . | [2] | |------------|--|-----| (c) | Find a matrix P such that | | | | $\langle a 0 0 \rangle$ | | | | $\mathbf{A} = \mathbf{P} \begin{pmatrix} a & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{pmatrix} \mathbf{P}^{-1}.$ | [5] | | | (0 0 -4) |
 | |------| | | | | | | | | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | | | | | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | |
 | © UCLES 2020 |
 | |-------| |
 | | | |
 | |
 | | | |
 | |
 | | | | | |
 | | | |
 | |
 | | | |
 | |
 | | | |
 | |
 | | | | ••••• | | | | | | | |
 | | | | | | | ## **Additional Page** | If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | | | |---|-------|--| | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where | | | reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. © UCLES 2020 9231/22/O/N/20