

Cambridge International AS & A Level

FURTHER MA	ATHEMATICS		9231/3
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 3 Further Mechanics

October/November 2020

1 hour 30 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

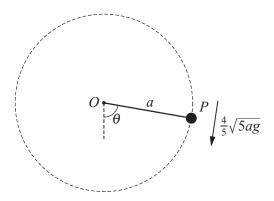
INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has **16** pages. Blank pages are indicated.

© UCLES 2020

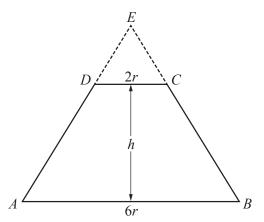
DC (RW) 206508



BLANK PAGE

© UCLES 2020 9231/33/O/N/20

A particle P of mass m is placed on a fixed smooth plane which is inclined at an angle θ to the horizontal A light spring, of natural length a and modulus of elasticity $3mg$, has one end attached to P and the other end attached to a fixed point O at the top of the plane. The spring lies along a line of greatest slope of the plane. The system is released from rest with the spring at its natural length.				
Find, in terms of a and θ , an expression for the greatest extension of the spring in the subsection.	quent [3]			
	•••••			
	•••••			
	•••••			
	•••••			


A particle P is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle P is held with the string taut and making an angle θ with the downward vertical. The particle P is then projected with speed $\frac{4}{5}\sqrt{5ag}$ perpendicular to the string and just completes a vertical circle (see diagram).

Find the value of $\cos \theta$.	[5]

One end of a light elastic string, of natural length a and modulus of elasticity 4mg, is attached to a

3

(a)	Find the value of k .	[4
(b)	Find the value of $\cos \theta$.	[2
(b)	Find the value of $\cos \theta$.	[2
(b)	Find the value of $\cos \theta$.	[2
(b)	Find the value of $\cos \theta$.	[2
(b)	Find the value of $\cos \theta$.	[2
(b)	Find the value of $\cos \theta$.	
(b)	Find the value of $\cos \theta$.	
(b)		
(b)	Find the value of $\cos \theta$.	
(b)		
(b)		

The diagram shows the cross-section ABCD of a uniform solid object which is formed by removing a cone with cross-section DCE from the top of a larger cone with cross-section ABE. The perpendicular distance between AB and DC is h, the diameter AB is h and the diameter h is h.

)	Find an expression, in terms of h , for the distance of the centre of mass of the solid object from	<i>AB</i> . [4]

The object is freely suspended from the point B and hangs in equilibrium. The angle between AB and the downward vertical through B is θ .

•••••	
•••••	
•••••	
•••••	
•••••	

plan	article P is projected with speed u at an angle α above the horizontal from a point O be and moves freely under gravity. The horizontal and vertical displacements of sequent time t are denoted by x and y respectively.	P from O at
(a)	Derive the equation of the trajectory of P in the form	
	$y = x \tan \alpha - \frac{gx^2}{2u^2} \sec^2 \alpha.$	[
		•••••
		•••••
		•••••
		•••••
		••••••
	point Q is the highest point on the trajectory of P in the case where $\alpha = 45^{\circ}$.	
(b)	Show that the x-coordinate of Q is $\frac{u^2}{2g}$.	

		•••••
(c)	Find the other value of α for which P would pass through the point Q .	[4]
		••••••
		••••••

9231/33/O/N/20

© UCLES 2020

Two smooth spheres A and B have equal radii and masses m and 2m respectively. Sphere B is at rest on

)	Find, in terms of u and e , the velocities of A and B after the collision.	[3
. (sequently, B collides with a fixed vertical wall which makes an angle θ with the direction where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collideration contains a fixed vertical wall which makes an angle θ with the direction of θ with the direction of θ and the wall is $\frac{2}{3}$. Immediately after B collideration contains a fixed vertical wall which makes an angle θ with the direction of θ with the direction of θ and θ collideration of θ collideration of θ and θ collideration of θ collideration of θ and θ collideration of θ collin	
k	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B .	es with the wal
k	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between <i>B</i> and the wall is $\frac{2}{3}$. Immediately after <i>B</i> collid	es with the wall
k	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B .	
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collidatinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B .	es with the wall
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collidatinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collidatinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
<	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collidatinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
k	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
k	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall
	where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B . Find the possible values of e .	es with the wall

6

20	9231/33/O/N/20	[Turn over
•••••		
•••••		
•••••		
•••••		
•••••		

© UCLES 2020

Show the	at the velocity vr	ms^{-1} of P is give	en by $v = \frac{100}{100}$	$\frac{1-2x}{x}$.	
•••••	•••••	•••••	•••••	•••••	
		•••••		•••••	
		•••••		•••••	
		•••••		•••••	
•••••	•••••	•••••	•••••	•••••	
•••••	•••••		•••••		
	•••••				
•••••					

7

Show that x and t are related by the equation x as t becomes large.	(200 1)0	[5

9231/33/O/N/20

© UCLES 2020

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		
		••••••
		••••••••••••
© UCLES 2020	9231/33/O/N/20	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9231/33/O/N/20

