

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

October/November 2021

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

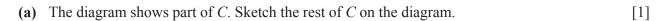
(a)	Give full details of the geometrical transformation in the <i>x-y</i> plane represented by the matrix $\begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.	trix [1]
Let	$\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix}.$	•••••
(b)	The triangle DEF in the x-y plane is transformed by A onto triangle PQR .	
	Given that the area of triangle <i>DEF</i> is 13 cm ² , find the area of triangle <i>PQR</i> .	[2]
(c)	Find the matrix B such that $\mathbf{AB} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.	[2]
(d)	Show that the origin is the only invariant point of the transformation in the x - y plane represer by \mathbf{A} .	nted [4]

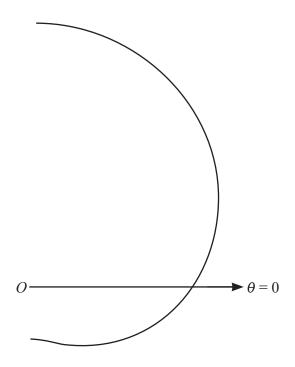
Prove by mathematical ir	duction that, for all positive integer	
	$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = \left(a^n x + n a^{n-1} \right) \mathrm{e}^{ax}.$	[6
	$\mathbf{d}x$	
•••••		

2	Let $S_{-} =$	$\sum_{n=1}^{n}$	r(r+2)
J	Let S_n –	· 🚄 '''	$(r+1)^2$
		$\nu=1$	(r+1)

				, show th	n	2(n+1)		
•••••				 				
•••••		••••••	•••••	 		•••••		
•••••				 	•••••	• • • • • • • • • • • • • • • • • • • •		
				 		• • • • • • • • • • • • • • • • • • • •		
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	 		• • • • • • • • • • • • • • • • • • • •	•••••	
•••••				 •••••	•••••			
•••••			••••••	 ••••••	•••••	••••••		
•••••	••••••	•••••	•••••	 •••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
				 	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	

Let
$$S = \sum_{r=1}^{\infty} \ln \frac{r(r+2)}{(r+1)^2}$$
.


Find the least value of <i>n</i> such that $S_n - S < 0.01$.	
	•••••
	•••••


(a)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[2]
(b)	Show that $\alpha^3 + \beta^3 + \gamma^3 = 1$.	[2]

(c) Use standard results from the list of formulae (MF19) to show that

	icic u, o	and c	116 60	11Staiit	S to D	e dele	511111110	ea.								
									•••••							
••••			•••••	•••••		•••••		•	• • • • • • • • • • • • • • • • • • • •			•	• • • • • • • • • • • • • • • • • • • •			
••••			•••••	•••••					• • • • • • • • •	• • • • • • • •					•••••	
••••																
		• • • • • • • • • • • • • • • • • • • •														
••••			•••••				• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••••			•••••
••••	•••••		•••••	••••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •						•••••	
	•••••								• • • • • • • • • • • • • • • • • • • •	• • • • • • • •						
••••			•••••	•••••					• • • • • • • •							
••••						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	• • • • • • • •			•••••		•••••	
••••			•••••			•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •		•	•••••			
••••			•••••	•••••		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • •			•••••	,	•••••	
••••	•••••		•••••	•••••			• • • • • • • • •		• • • • • • • •	• • • • • • •					•••••	
••••			•••••			•••••			• • • • • • • • • • • • • • • • • • • •		••••••		•••••			

5 The curve C has polar equation $r = 3 + 2\sin\theta$, for $-\pi < \theta \le \pi$.

The straight line *l* has polar equation $r \sin \theta = 2$.

Add l to the diagram in part (a) and find the polar coordinates of the points of intersection of and l .

The region R is enclosed by C and I , and contains the pole.	
Find the area of R , giving your answer in exact form.	[6
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

	curve C has equation $y = \frac{x^2}{x-3}$.	
	Find the equations of the asymptotes of C .	[
(b)	Show that there is no point on C for which $0 < y < 12$.	[

(c) Sketch *C*. [2]

(d) (i) Sketch the graphs of $y = \left| \frac{x^2}{x-3} \right|$ and y = |x| - 3 on a single diagram, stating the coordinates of the intersections with the axes. [4]

(ii) Use your sketch to find the set of values of c for which $\left|\frac{x^2}{x-3}\right| \le |x| + c$ has no solution. [1]

	7	The	points	A.	В.	C hav	e position	vectors
--	---	-----	--------	----	----	-------	------------	---------

$$2\mathbf{i} + 2\mathbf{j}$$
, $-\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - 7\mathbf{k}$

respectively, relative to the origin O.

	ation of the plane <i>O</i>	DAB, giving your answer	in the form $\mathbf{r.n} = p$.	
				•••••
				•••••
				•••••
•••••				•••••
	•••••			•••••
				•••••
	s equation $x - 3y - 2$			
Find the ne	rpendicular distance	e of Π from the origin.		
i ma me pe				•••••

Find the acute angle between the planes OAB and Π .	
	• • •
	•••
	•••
	•••
	•••
	• • •

 •••••
•••••
•••••
•••••
•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							
				•••••			
				••••••			
				•••••			
	,						
				••••••			
	······						

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.