

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/21

Paper 2 Further Pure Mathematics 2

October/November 2021

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

•••••	•••••	•••••		••••••		••••••	•••••	
						••••••	•••••	•••••
•••••		•••••			•••••	•••••	••••••	
								•••••
								•••••
								•••••
					•••••			
								•••••
								•••••
							•••••	
							•••••	
			•••••	•••••			•••••	•••••
								•••••

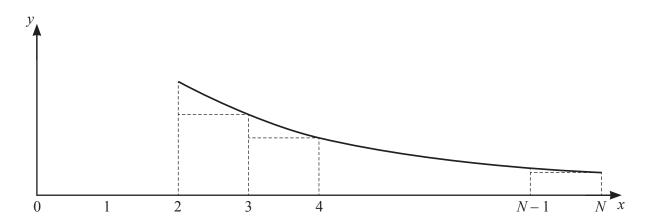
2 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} -1 & 2 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Use the characteristic equation of A to show that

$$\mathbf{A}^4 = p\mathbf{A}^2 + q\mathbf{I},$$

where p and q are integers to be determined.	[6]


3	Tha	0115770	Char	equation
J	1116	curve	C Has	cquation

$$xy^3 - 4x^3y = 3.$$

Show that, at the point $(-1,1)$ on C , $\frac{dy}{dx} = 11$.	

Find the value of $\frac{d^2y}{dx^2}$ at the point (-1,				
				••••••
		•••••		
	,	•••••		
	,	•••••	•••••	
	,	•••••	•••••	
		•••••		

4

The diagram shows the curve with equation $y = \frac{\ln x}{x^2}$ for $x \ge 2$, together with a set of (N-2) rectangles of unit width.

(a) By considering the sum of the areas of these rectangles, show that

$\sum_{r=1}^{N}$	$\frac{\ln r}{r^2} < \frac{2+3\ln 2}{4}$	$-\frac{1+\ln N}{N}.$	[7]

(b)	Use a similar method to find, in terms of N , a lower bound for	$\sum_{r=1}^{N} \frac{\ln r}{r^2}.$	[3]	
			· • • • •	
			· • • • •	
			· • • • •	
			· • • • •	
			· • • • •	
			· • • • •	
			· • • • •	
			· • • • •	

5 Find the particular solution of the differential equation

	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 4\cos x,$	
given that, when $x = 0$, $y = -4$ and	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3.$	1]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		••

6 (a) Use de Moivre's theorem to show that

$\csc 5\theta =$	$= \frac{\csc^5 \theta}{5 \csc^4 \theta - 20 \csc^2 \theta + 16}.$	[6]

((b)	Hence	obtain	the	roots	of t	he e	quatio	n
М	\ ~ /	1101100	CCtairi	uii	1000	OI U		quatro	

5	10.4	$+40x^{2}$	22	_ 0
x^{-}	I Ux	$+40x^{-}$	-32	= ()

in the form $\csc(q\pi)$, where q is rational.	[4]

7	(a)	Show that an appropriate integrating factor for
		$\sqrt{x^2 - 1} \frac{dy}{dx} + y = x^2 - x\sqrt{x^2 - 1}$
		is $x + \sqrt{x^2 - 1}$. [4]

$\sqrt{x^2 - 1} \frac{dy}{dx} + y = x^2 - x\sqrt{x^2 - 1}$
for which $y = 1$ when $x = \frac{5}{4}$. Give your answer in the form $y = f(x)$.

	2	
	$2\cosh^2 A = \cosh 2A + 1.$	[3]
••••		
••••		
The cur	C has parametric equations	
	$x = 2\cosh 2t + 3t$, $y = \frac{3}{2}\cosh 2t - 4t$, for $-\frac{1}{2} \le t \le \frac{1}{2}$.	
The one		ovia ia domotod
by A .	ea of the surface generated when C is rotated through 2π radians about the	y-axis is denoted
-	Show that $A = 10\pi \int_{-\frac{1}{2}}^{\frac{1}{2}} (2\cosh 2t + 3t)\cosh 2t dt$.	F 43
(b) (1)	Show that $A = 10\pi \left((2 \cosh 2t + 3t) \cosh 2t \right) dt$.	[4]
	$J-\frac{1}{2}$	
	$J-\frac{1}{2}$	
	J-½	
	$J-\frac{1}{2}$	
	$J-\frac{1}{2}$	
	$J-\frac{1}{2}$	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.