Cambridge International AS & A Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 400162879 ### **FURTHER MATHEMATICS** 9231/21 Paper 2 Further Pure Mathematics 2 October/November 2022 2 hours You must answer on the question paper. You will need: List of formulae (MF19) ### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown. - You should use a calculator where appropriate. - You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator. - Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question. ### **INFORMATION** - The total mark for this paper is 75. - The number of marks for each question or part question is shown in brackets []. This document has 16 pages. Any blank pages are indicated. # **BLANK PAGE** | • | | |---|--| | • |
 | | |
 | | | | | |
 | | |
 | | | | | | | | | | | | | | | • | | | • | | | | | | • |
 | | |
 | | | | | |
 | | | | | x - y + 2z = 4, | 2 (a) Show that the system of equation | попѕ | equanc | or eq | ystem (| : S | ıne | ınaı | Snow | (a) | Z | |--|------|--------|-------|---------|-----|-----|------|------|-----|---| |--|------|--------|-------|---------|-----|-----|------|------|-----|---| | | x-y-3z=a, | | |-----|---|-------------------| | | x - y + 7z = 13, | | | | where a is a constant, does not have a unique solution. | [2] | (b) | Given that $a = -5$, show that the system of equations in part (a) is consistent. In situation geometrically. | terpret this [3] | (c) | Given instead that $a \neq -5$, show that the system of equations in part (a) is inconsister this situation geometrically. | nt. Interpret [2] | 3 | The curve | C has | parametric | equations | |---|-----------|-------|------------|-----------| | | | | | | | | $x = e^t - \frac{1}{3}t^3,$ | $y = 4e^{\frac{1}{2}t}(t -$ | -2), fo | or $0 \le t \le 2$. | | | |--------------------------|-----------------------------|-----------------------------|---------|----------------------|--------|-----| | Find, in terms of e, the | length of <i>C</i> . | | | | | [6] | ••••• | ••••• | •••••• | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | | •••••• | | | | | | | | •••••• | •••••• | •••••• | $\cosh^2 x - \sinh^2 x = 1.$ | [3 | |---|--|-----|) | Show that $\frac{d}{dx}(\tanh x) = \operatorname{sech} x$. | [3] | | • | Show that $\frac{d}{dx} (\tan^{-1} (\sinh x)) = \operatorname{sech} x$. | [3] | |) | Show that $\frac{d}{dx} (\tan^{-1} (\sinh x)) = \operatorname{sech} x$. | [3] | |) | Show that $\frac{d}{dx} (\tan^{-1} (\sinh x)) = \operatorname{sech} x$. | [3] | | | Show that $\frac{d}{dx} (\tan^{-1}(\sinh x)) = \operatorname{sech} x$. | | | | | | |) | | | | | | | | | | | | | | | |) | | | | | | | | (c) | Sketch the graph of $y = \operatorname{sech} x$, stating the equation of the asymptote. | [2] | |-----|---|-------| (d) | By considering a suitable set of <i>n</i> rectangles of unit width, use your sketch to show that | | | | $\sum_{n=1}^{n} \operatorname{sech} r < \tan^{-1}(\sinh n).$ | [3] | | | r=1 | L- J | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | $_{\infty}$ | | | (e) | Hence state an upper bound, in terms of π , for $\sum_{r=1}^{\infty} \operatorname{sech} r$. | [1] | | | r=1 | | | | | | | | | | | $2\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 4x^2 + 3x + 3,$ | | |--|------| | given that, when $x = 0$, $y = \frac{dy}{dx} = 0$. | [10] |
 | |------| |
 | |
 | | | | | |
 | |
 | |
 | | | | | | | |
 | |
 | |
 | | | | | | | |
 | |
 | |
 | | | | | 6 The matrix A is given by | | /2 | -3 | | |----------------|------------|----|----| | $\mathbf{A} =$ | 0 | 5 | 7 | | | $\sqrt{0}$ | 0 | -2 | | Find a matrix P and a diagonal matrix D such that $A^5 = PDP^{-1}$. | | |--|---| | | | | | | | | • | | | | | | | | | | | | | | | • | | | | | | | | | ••••• | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | • | Use the characteristic equation of A to show that | | | | | | |--|--|--|--|--|--| | $\mathbf{A}^4 = a\mathbf{A}^2 + b\mathbf{I},$ | | | | | | | where a and b are integers to be determined. | [4] | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | ••••• | | | | | | | ••••• | $A^4 = aA^2 + bI$, where a and b are integers to be determined. | | | | | | State the sum of the series $1 + w + w^2 + w^3 + + w^{n-1}$, for $w \ne 1$. | [1] | |---|--| | Show that $(1 + i \tan \theta)^k = \sec^k \theta (\cos k\theta + i \sin k\theta)$, where θ is not an integer multiple of $\frac{1}{2}\pi$. | [2] | | | | | $\kappa - 0$ | | | $\sum_{k=0}^{\infty} \sec^k \theta \sin k\theta = \cot \theta (1 - \sec^n \theta \cos n\theta),$ | | | provided θ is not an integer multiple of $\frac{1}{2}\pi$. | [5] | ••••• | | | | | | ••••• | | | | | | | | | | | t | State the sum of the series $1 + w + w^2 + w^3 + + w^{w-1}$, for $w \neq 1$. Show that $(1 + i \tan \theta)^k = \sec^k \theta(\cos k\theta + i \sin k\theta)$, where θ is not an integer multiple of $\frac{1}{2}\pi$. By considering $\sum_{k=0}^{n-1} (1 + i \tan \theta)^k$, show that $\sum_{k=0}^{n-1} \sec^k \theta \sin k\theta = \cot \theta (1 - \sec^n \theta \cos n\theta),$ provided θ is not an integer multiple of $\frac{1}{2}\pi$. | | | | •• | |-----|---|--------| | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | 6m-1 | | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin(\frac{1}{3}k\pi)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin(\frac{1}{3}k\pi)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | 2] | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | 2]
 | | (d) | Hence find $\sum_{k=0}^{6m-1} 2^k \sin\left(\frac{1}{3}k\pi\right)$ in terms of m . | | | (d) | | | $\int \frac{\theta - 1}{\sqrt{1 - (\theta - 1)^2}} d\theta.$ | |--|-----|--| | $\theta \frac{\mathrm{d}y}{\mathrm{d}\theta} - y = \theta^2 \sin^{-1}(\theta - 1),$ where $0 < \theta < 2$, given that $y = 1$ when $\theta = 1$. Give your answer in the form $y = f(\theta)$. | | | | $\theta \frac{dy}{d\theta} - y = \theta^2 \sin^{-1}(\theta - 1),$ where $0 < \theta < 2$, given that $y = 1$ when $\theta = 1$. Give your answer in the form $y = f(\theta)$. | | | | $\theta \frac{dy}{d\theta} - y = \theta^2 \sin^{-1}(\theta - 1),$ where $0 < \theta < 2$, given that $y = 1$ when $\theta = 1$. Give your answer in the form $y = f(\theta)$. | | | | where $0 < \theta < 2$, given that $y = 1$ when $\theta = 1$. Give your answer in the form $y = f(\theta)$. | (b) | | | | | |
 | ••••• | ••••• | | |-------|-----------|--------|--------|--| | |
 |
 | ••••• | | | | ••••• |
••••• | •••••• | •••••• | | | |
 | ••••• | | | | |
 | | | | ## Additional page | If you use the following page to complete the answer to any question, the question number must be clearly shown. | |--| Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.