Cambridge International AS & A Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 0510110257 ## **FURTHER MATHEMATICS** 9231/22 Paper 2 Further Pure Mathematics 2 October/November 2022 2 hours You must answer on the question paper. You will need: List of formulae (MF19) ### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown. - You should use a calculator where appropriate. - You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator. - Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question. ### **INFORMATION** - The total mark for this paper is 75. - The number of marks for each question or part question is shown in brackets []. This document has 16 pages. | | Find the set of values of k for which the system of equations $x + 2y + 3z = 1,$ | | |-----|---|----| | | kx + 4y + 6z = 0, | | | | 7x + 8y + 9z = 3, | | | | has a unique solution. | [3 | (b) | Interpret the situation geometrically in the case where the system of equation unique solution. | | | | unique solution. | [2 | | | | | | | | | | | | | | | | | | _ | | | _ | | |---|---------------|---------|-----|----------| | 7 | Λ. | CHITTIA | hac | equation | | _ | $\overline{}$ | Cuive | Has | Cuualion | | | | (x + | $1)y + y^2 = 2.$ | | |-----|-------------------------------|--|------------------|---------| | (a) | Show that $\frac{dy}{dx} = -$ | $-\frac{2}{3}$ at the point $(0, -2)$ |). | [3] | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | | | | d^2v | |
 | | (b) | Find the value of | $\frac{d^2y}{dx^2}$ at the point $(0, -\frac{1}{2})$ | |
[4] | | | | | |
 | | | | | | | | | | | | | | | | | |
 | | | | | |
 | | sur | face generated when the curve is rotated through 2π radians about the x-axis. | | |------|---|------| •••• | | •••• | | | | | | | | | | | | | | | | •••• | | | | | | | | | | | | | | •••• | | •••• | •••• | | •••• | | | | | | | | | | | | | | •••• | | •••• | | | | •••• | | | | | | | | | | | | •••• | | •••• | | | | | | | | | | | © UCLES 2022 | |
••••• |
• | | | |--|-----------|---|----------------|-------------------| | |
 |
 | | | | | | | | | | | | | | | | ••••••• |
••••• |
 | ••••• | ••••• | | |
 |
 | | ••••• | | |
 |
 | | | | |
 |
 | | | | |
 |
 | | | | | | , or otherwise, | find the Macla | | | Using standard For $e^x + \frac{1}{4}e^{-x}$ u | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | | | | | , or otherwise, | find the Macla | urin's series [2] | 4 Find the solution of the differential equation | $(4t^2 -$ | $1)\frac{\mathrm{d}x}{\mathrm{d}t}$ | +4x | = | $4t^2$ | _ | 1 | |-----------|-------------------------------------|-----|---|--------|---|---| |-----------|-------------------------------------|-----|---|--------|---|---| | for which $x = 3$ when $t = 1$. Give your answer in the form $x = f(t)$. | [9] | |--|-------| ••••• | (a) | Write down the fourth roots of unity. | [1 | |-----|---|-------| | | | | | (b) | Use de Moivre's theorem to show that | | | | $\cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1.$ | [4 | ••••• | ••••• | | | | | | | | ••••• | | 16 | $(8x^4 -$ | $-8r^2$ | +1 | ⁴ – | 9 = | - 0 | |-----|-----------|---------|----|----------------|-----------|-----| | 101 | - Ολ | — Oл | TI | , — | ラー | - v | | in the form $cos(q\pi)$, where q is a rational number. | [5] | |---|-----| 6 The diagram shows the curve $y = \frac{1}{\sqrt{x^2 + 2x}}$ for x > 0, together with a set of (n-1) rectangles of unit width. By considering the sum of the areas of these rectangles, show that | $\sum_{r=1}^{n} \frac{1}{\sqrt{r^2 + 2r}} < \ln(n + 1 + \sqrt{n^2 + 2n}) + \frac{1}{3}\sqrt{3} - \ln(2 + \sqrt{3}).$ | 10] | |--|-----| |--|-----| | • | |---| | | | | |
 | | | | | |
• | | | | | | • | | | | | |
 | • | | | | | | • | | | | | | • | | | | | | • | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | | | | | | | | | | | |
 | ' (a |) It is given that λ is an eigenvalue of the non-singular square matrix \mathbf{A} , with corresponding eigenvector \mathbf{e} . | |------|--| | | Show that λ^{-1} is an eigenvalue of \mathbf{A}^{-1} for which \mathbf{e} is a corresponding eigenvector. [2] | | | | | | | | T | he matrix A is given by | | | $\mathbf{A} = \begin{pmatrix} 2 & 0 & 3 \\ 15 & -4 & 3 \\ 3 & 0 & 2 \end{pmatrix}.$ | | (b | Given that -1 is an eigenvalue of \mathbf{A} , find a corresponding eigenvector. [2] | | | | | (c |) It is also given that $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ are eigenvectors of A . Find the corresponding eigenvalues. [2] | • | |------------|--------------|------------|----------------|-------------|-----------------------|---|---------|---| | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | ••••• | Use the ch | aracteristic | e equation | of A to | show that | $\mathbf{A}^{-1} = n$ | $A^2 + aI$ | where n | and q are ra | | numbers to | be determi | ined. | 01 11 10 | Silo W tild | , 1 1 P | , q <u>,</u> | where p | ana y are re | • | • | • | | | | | | | | | | | | | | •••••• | | | | • | | • | ••••• | | | | | | • | | • | | | | | | | | | | • | | | | | | | | | | | | ••••• | | ••••• | , | | | • | ••••• | ••••• | ••••• | | | | • | | ••••• | ••••• | 8 It is given that $y = \cosh u$, where u > 0, and $$\sqrt{\cosh^2 u - 1} \left(\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} \right) + \cosh u \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right)^2 - 2\cosh u = 4\mathrm{e}^{-x}.$$ (a) Show that **(b)** | | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 4\mathrm{e}^{-x}.$ | [4] | |--|---|------| Find u in terms of x , given that, | when $x = 0$, $u = \ln 3$ and $\frac{du}{dx} = 3$. | [10] |
 |
 | | | |-----------|------|-------|--| |
••••• |
 | ••••• | | |
 |
 | ••••• | | |
 |
 | ••••• | | |
 |
 | | | |
 |
 | ••••• | | |
 |
 | | | |
 |
 | | | |
 |
 | ••••• | | |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 | | | |
 |
 | ••••• | | |
 |
 | | | |
 |
 | | | |
 |
 | | | # Additional page | If you use the following page to complete the answer to any question, the question number must be clearly shown. | |--| Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.